更改

跳到导航 跳到搜索
添加46字节 、 2024年11月5日 (星期二)
第41行: 第41行:     
=== 柯氏复杂度 ===
 
=== 柯氏复杂度 ===
在已有的众多复杂度量化指标中,柯氏复杂度是最符合我们要求的一个指标,[[柯式复杂度]][math]\displaystyle{ K(x) }[/math]是指在通用确定性[[图灵机]](Universal Turing Machine,简称UTM)上运行时生成字符串[math]\displaystyle{ x }[/math]的最小程序长度。UTM的能力在于可以模拟任何图灵机,因此可以执行任何可计算的过程。柯氏复杂度则依赖于这种通用性,通过UTM,可以理解任何字符串或数据的最短生成程序。但它也有比较明显的两个问题,第一个问题是它的不可计算性,由于图灵停机问题的存在,我们无法构造一个通用算法来决定任意程序是否会在给定输入上停机。这意味着我们不能有效地判断哪些程序是最短的,因为没有方法可以保证找到最短程序的存在与否。由于没有通用的方法来验证或找到描述字符串[math]\displaystyle{ x }[/math]的最短程序,我们就无法计算柯氏复杂度。即使我们能够找到一个描述字符串[math]\displaystyle{ x }[/math]的程序,我们也无法保证它是最短的。为了确定程序是否为最短程序,我们需要检查所有可能的程序,而这一过程在计算上是不可行的。第二个问题是它可能无法度量程序的结构和动态特性,因为柯式复杂度[math]\displaystyle{ K(x) }[/math]需要考虑字符串中的所有比特,包括随机状态生成的比特。若[math]\displaystyle{ K(x) }[/math]中字符串[math]\displaystyle{ x }[/math]大部分是由随机状态生成,这样会导致[math]\displaystyle{ x }[/math]的特征和重要结构被掩盖。
+
在已有的众多复杂度量化指标中,柯氏复杂度是最符合我们要求的一个指标,[[柯式复杂度]][math]\displaystyle{ K(x) }[/math]是指在通用确定性[[图灵机]](Universal Turing Machine,简称UTM)上运行时生成字符串[math]\displaystyle{ x }[/math]的最小程序长度。UTM的能力在于可以模拟任何图灵机,因此可以执行任何可计算的过程。柯氏复杂度则依赖于这种通用性,通过UTM,可以理解任何字符串或数据的最短生成程序。但它也有比较明显的两个问题,第一个问题是它的不可计算性,由于[[图灵机与计算问题|图灵停机]]问题的存在,我们无法构造一个通用算法来决定任意程序是否会在给定输入上停机。这意味着我们不能有效地判断哪些程序是最短的,因为没有方法可以保证找到最短程序的存在与否。由于没有通用的方法来验证或找到描述字符串[math]\displaystyle{ x }[/math]的最短程序,我们就无法计算柯氏复杂度。即使我们能够找到一个描述字符串[math]\displaystyle{ x }[/math]的程序,我们也无法保证它是最短的。为了确定程序是否为最短程序,我们需要检查所有可能的程序,而这一过程在计算上是不可行的。第二个问题是它可能无法度量程序的结构和动态特性,因为柯式复杂度[math]\displaystyle{ K(x) }[/math]需要考虑字符串中的所有比特,包括随机状态生成的比特。若[math]\displaystyle{ K(x) }[/math]中字符串[math]\displaystyle{ x }[/math]大部分是由随机状态生成,这样会导致[math]\displaystyle{ x }[/math]的特征和重要结构被掩盖。
    
=== '''统计复杂度''' ===
 
=== '''统计复杂度''' ===
第77行: 第77行:     
=== 香农熵率 ===
 
=== 香农熵率 ===
香农熵率(Shannon Entropy Rate)是信息论中的一个概念,通常用来衡量一个信源或随机过程在单位时间内传输的信息量,或者说是该信源的不确定性和复杂性的度量。它是香农熵的扩展,主要用于描述时间序列(如随机过程)的平均信息量。在计算力学中用香农熵率来监测智能体对外部环境的适应能力,智能体的香农熵率越接近外部环境的香农熵率,说明它的适应能力就越强。如果待测对象是由信息源(例如[[马尔可夫链]])生成的离散符号序列[math]\displaystyle{ s^L }[/math] ,[math]\displaystyle{ L }[/math]为序列的长度,柯式复杂度与香农熵率[math]\displaystyle{ h_μ }[/math]的关系为:
+
香农熵率(Shannon Entropy Rate)是信息论中的一个概念,通常用来衡量一个[[信源]]或[[随机过程]]在单位时间内传输的[[信息量]],或者说是该信源的不确定性和复杂性的度量。它是香农熵的扩展,主要用于描述时间序列(如随机过程)的平均信息量。在计算力学中用香农熵率来监测智能体对外部环境的适应能力,智能体的香农熵率越接近外部环境的香农熵率,说明它的适应能力就越强。如果待测对象是由信源(例如[[马尔可夫链]])生成的离散符号序列[math]\displaystyle{ s^L }[/math] ,[math]\displaystyle{ L }[/math]为序列的长度,柯式复杂度与香农熵率[math]\displaystyle{ h_μ }[/math]的关系为:
    
<math>
 
<math>
第83行: 第83行:  
</math>
 
</math>
   −
在这里,[[香农熵率]]就可以定义为:
+
在这里,香农熵率就可以定义为:
    
<math>
 
<math>
第90行: 第90行:  
其中<math> \Pr(s^L)</math>是[math]\displaystyle{ s^L }[/math]的边际分布,[math]\displaystyle{ H }[/math]是[[Shannon熵]],也就是[[自信息]]的平均值,在建模框架中,[math]\displaystyle{ h_μ }[/math]是信息不确定性程度的归一化指标,信息的不确定性越高,香农熵率越大,在这里可以解释为智能体在预测序列[math]\displaystyle{ s^L }[/math]的后续符号时的误差率。
 
其中<math> \Pr(s^L)</math>是[math]\displaystyle{ s^L }[/math]的边际分布,[math]\displaystyle{ H }[/math]是[[Shannon熵]],也就是[[自信息]]的平均值,在建模框架中,[math]\displaystyle{ h_μ }[/math]是信息不确定性程度的归一化指标,信息的不确定性越高,香农熵率越大,在这里可以解释为智能体在预测序列[math]\displaystyle{ s^L }[/math]的后续符号时的误差率。
   −
如果[math]\displaystyle{ s^L }[/math]表示[math]\displaystyle{ x }[/math]的前[math]\displaystyle{ L }[/math]个符号,那么复杂性之间的关系简单地为:
+
上文中我们介绍了柯式复杂度、统计复杂度和香农熵率这三个与复杂性相关的指标,其实这三者之间存在一个近似关系,可以用公式表示为:
    
[math]\displaystyle{ K(s^L )≈C_μ (s^L )+h_μ L }[/math]
 
[math]\displaystyle{ K(s^L )≈C_μ (s^L )+h_μ L }[/math]
   −
如果在已确定描述语言(程序)的情况下,柯式复杂度[math]\displaystyle{ K(s^L ) }[/math]可以理解为描述[math]\displaystyle{ s^L }[/math]所用的总[[信息量]]。[math]\displaystyle{ h_μ L }[/math]为允许损失的信息量。统计复杂度[math]\displaystyle{ C_μ (s^L ) }[/math]可以理解为允许存在误差率[math]\displaystyle{ h_μ }[/math]的情况下,描述[math]\displaystyle{ s^L }[/math]所用的最少信息量。
+
如果在已确定描述语言(程序)的情况下,柯式复杂度[math]\displaystyle{ K(s^L ) }[/math]可以理解为描述[math]\displaystyle{ s^L }[/math]所用的总信息量。[math]\displaystyle{ h_μ L }[/math]为允许损失的信息量。统计复杂度[math]\displaystyle{ C_μ (s^L ) }[/math]可以理解为允许存在误差率[math]\displaystyle{ h_μ }[/math]的情况下,描述[math]\displaystyle{ s^L }[/math]所用的最少信息量。
    
==因果态==
 
==因果态==
要计算模型的统计复杂度[math]\displaystyle{ C_μ(x) }[/math],我们需要找到一种方法来最大限度地压缩描述测量结果的字符串。这意味着我们要识别出测量结果中的斑图。具体来说,我们利用微分的思想,将测量结果的数据划分为若干部分,并将每个斑图的数据独立划分,会观察到在不同时间点上,某些斑图会反复出现。我们可以用同一个字符串来表示这些重复出现的斑图,这样就能简化我们的描述,得到模型的最小程序长度。我们可以把这些能够用同一个字符串描述的重复斑图称为“因果态”,这样一来,通过找到这些因果态,就能计算出模型的统计复杂度。
+
要计算模型的统计复杂度[math]\displaystyle{ C_μ(x) }[/math],我们需要找到一种方法来最大限度地压缩描述测量结果的字符串。这意味着要先识别出测量结果中的斑图。具体来说,我们可以利用微分的思想,将测量结果的数据划分为若干部分,并将每个斑图的数据独立划分,会观察到在不同的时刻,某些斑图会反复出现。我们可以用同一个字符串来表示这些重复出现的斑图,这样就能简化我们的描述,得到模型的最小程序长度。我们可以把这些能够用同一个字符串描述的重复斑图称为“因果态”,这样一来,通过找到这些因果态,就能计算出模型的统计复杂度。
    
===因果态的定义===
 
===因果态的定义===
276

个编辑

导航菜单