更改

无编辑摘要
第8行: 第8行:     
    
 
    
'''动力系统理论 Dynamical Systems Theory'''是一个用来描述复杂动力系统行为的数学领域,通常使用微分方程或差分方程。当采用微分方程时,该理论被称为连续动力系统。从物理学的角度来看,连续动力系统是经典力学的推广,也是运动方程的推广,不受极小作用原理Euler–Lagrange方程的约束。当采用差分方程时,该理论被称为离散动力系统。{1e当时间变量在一个离散的集合上运行,在另一个离散的集合上连续,或者像cantor集一样在任意的时间集合上运行时,人们就能得到时间尺度上的动力方程。}
+
'''动力系统理论 Dynamical Systems Theory'''是一个用来描述复杂动力系统行为的数学领域,通常使用微分方程或差分方程。当采用微分方程时,该理论被称为连续动力系统。从物理学的角度来看,连续动力系统是经典力学的推广,也是运动方程的推广,不受极小作用原理Euler–Lagrange方程的约束。当采用差分方程时,该理论被称为离散动力系统。<font color="red">当时间变量在一个离散的集合上运行,在另一个离散的集合上连续,或者像cantor集一样在任意的时间集合上运行时,人们就能得到时间尺度上的动力方程。</font>
 
'''算子 Operators'''是一个函数空间到函数空间上的映射O:X→X,广义的讲,对任何函数进行某一项操作都可以认为是一个算子,如求幂次、求微分等。动力系统的有些情况也可以用'''混合算子 Mixed Operators'''来建模,如微分-差分方程。
 
'''算子 Operators'''是一个函数空间到函数空间上的映射O:X→X,广义的讲,对任何函数进行某一项操作都可以认为是一个算子,如求幂次、求微分等。动力系统的有些情况也可以用'''混合算子 Mixed Operators'''来建模,如微分-差分方程。
  
106

个编辑