更改

添加3,079字节 、 2020年7月12日 (日) 08:00
第882行: 第882行:  
* [[Classical mechanics]]: The laws of classical mechanics can be said to emerge as a limiting case from the rules of [[quantum mechanics]] applied to large enough masses. This is particularly strange since quantum mechanics is generally thought of as ''more'' complicated than classical mechanics.
 
* [[Classical mechanics]]: The laws of classical mechanics can be said to emerge as a limiting case from the rules of [[quantum mechanics]] applied to large enough masses. This is particularly strange since quantum mechanics is generally thought of as ''more'' complicated than classical mechanics.
    +
[[经典力学] : 可以说经典力学的法律是从量子力学规则中涌现的,适用于足够大的物质的一个有限的例子。这一点特别奇怪,因为人们通常认为量子力学比经典力学更复杂。
    +
* [[Friction]]: Forces between elementary particles are conservative. However, friction emerges when considering more complex structures of matter, whose surfaces can convert mechanical energy into heat energy when rubbed against each other. Similar considerations apply to other emergent concepts in [[continuum mechanics]] such as [[viscosity]], [[Elasticity (physics)|elasticity]], [[tensile strength]], etc.
   −
* [[Friction]]: Forces between elementary particles are conservative. However, friction emerges when considering more complex structures of matter, whose surfaces can convert mechanical energy into heat energy when rubbed against each other. Similar considerations apply to other emergent concepts in [[continuum mechanics]] such as [[viscosity]], [[Elasticity (physics)|elasticity]], [[tensile strength]], etc.
      +
 +
Friction: Forces between elementary particles are conservative. However, friction emerges when considering more complex structures of matter, whose surfaces can convert mechanical energy into heat energy when rubbed against each other. Similar considerations apply to other emergent concepts in continuum mechanics such as viscosity, Elasticity (physics)|elasticity, tensile strength, etc.
    +
摩擦力: 基本粒子之间的力是'''保守的 Conservative'''。然而,当考虑到物质更复杂的结构时,摩擦就涌现了。物质表面相互摩擦时,机械能转化为热能。类似的涌现现象也适用于连续介质力学中的概念,如粘度、弹性、抗拉强度等。
    
* [[Patterned ground]]: the distinct, and often symmetrical geometric shapes formed by ground material in periglacial regions.
 
* [[Patterned ground]]: the distinct, and often symmetrical geometric shapes formed by ground material in periglacial regions.
    +
Patterned ground: the distinct, and often symmetrical geometric shapes formed by ground material in periglacial regions.
    +
'''有图案的地面 Patterned Ground''': 有图案的地面是在冰缘地区由地面材料形成的明显的,通常是对称的几何图形。
    
* [[Statistical mechanics]] was initially derived using the concept of a large enough [[statistical ensemble (mathematical physics)|ensemble]] that fluctuations about the most likely distribution can be all but ignored. However, small clusters do not exhibit sharp first order [[phase transition]]s such as melting, and at the boundary it is not possible to completely categorize the cluster as a liquid or solid, since these concepts are (without extra definitions) only applicable to macroscopic systems.  Describing a system using statistical mechanics methods is much simpler than using a low-level atomistic approach.
 
* [[Statistical mechanics]] was initially derived using the concept of a large enough [[statistical ensemble (mathematical physics)|ensemble]] that fluctuations about the most likely distribution can be all but ignored. However, small clusters do not exhibit sharp first order [[phase transition]]s such as melting, and at the boundary it is not possible to completely categorize the cluster as a liquid or solid, since these concepts are (without extra definitions) only applicable to macroscopic systems.  Describing a system using statistical mechanics methods is much simpler than using a low-level atomistic approach.
    +
Statistical mechanics was initially derived using the concept of a large enough statistical ensemble (mathematical physics)|ensemble that fluctuations about the most likely distribution can be all but ignored. However, small clusters do not exhibit sharp first order phase transitions such as melting, and at the boundary it is not possible to completely categorize the cluster as a liquid or solid, since these concepts are (without extra definitions) only applicable to macroscopic systems.  Describing a system using statistical mechanics methods is much simpler than using a low-level atomistic approach.
    +
统计力学最初是用一个足够大的数学和物理学集合的概念推导出来的,最有可能分布的波动可以是任何事情,但是不可以忽略不计。然而,小的团簇不表现出明显的一级相变,例如熔化,而且在边界上不可能完全将团簇归类为液体或固体,因为这些概念(没有额外的定义)只适用于宏观系统。使用统计力学方法描述一个系统要比使用低层次的原子论方法简单得多。
    
* [[Electrical networks]]: The bulk conductive response of binary (RC) electrical networks with random arrangements, known as the [[Universal dielectric response|Universal Dielectric Response (UDR)]], can be seen as emergent properties of such physical systems. Such arrangements can be used as simple physical prototypes for deriving mathematical formulae for the emergent responses of complex systems.<ref>{{cite journal|url = | doi=10.1016/j.physa.2012.10.035 | volume=392 | issue=4 | title=The origin of power-law emergent scaling in large binary networks | year=2013 | journal=Physica A: Statistical Mechanics and Its Applications | pages=1004–1027 | last1 = Almond | first1 = D.P. | last2 = Budd | first2 = C.J. | last3 = Freitag | first3 = M.A. | last4 = Hunt | first4 = G.W. | last5 = McCullen | first5 = N.J. | last6 = Smith | first6 = N.D.| arxiv=1204.5601 | bibcode=2013PhyA..392.1004A }}</ref>
 
* [[Electrical networks]]: The bulk conductive response of binary (RC) electrical networks with random arrangements, known as the [[Universal dielectric response|Universal Dielectric Response (UDR)]], can be seen as emergent properties of such physical systems. Such arrangements can be used as simple physical prototypes for deriving mathematical formulae for the emergent responses of complex systems.<ref>{{cite journal|url = | doi=10.1016/j.physa.2012.10.035 | volume=392 | issue=4 | title=The origin of power-law emergent scaling in large binary networks | year=2013 | journal=Physica A: Statistical Mechanics and Its Applications | pages=1004–1027 | last1 = Almond | first1 = D.P. | last2 = Budd | first2 = C.J. | last3 = Freitag | first3 = M.A. | last4 = Hunt | first4 = G.W. | last5 = McCullen | first5 = N.J. | last6 = Smith | first6 = N.D.| arxiv=1204.5601 | bibcode=2013PhyA..392.1004A }}</ref>
    +
Electrical networks: The bulk conductive response of binary (RC) electrical networks with random arrangements, known as the Universal Dielectric Response (UDR), can be seen as emergent properties of such physical systems. Such arrangements can be used as simple physical prototypes for deriving mathematical formulae for the emergent responses of complex systems.<ref>
    +
电网络: 具有随机排列的'''二元电网络的体传导响应 bulk conductive response of binary (RC)''',称为'''通用介电响应 Universal Dielectric Response (UDR)''' ,可以看作是这种物理系统的涌现特性。这样的排列可以被用作简单的,用于推导复杂系统涌现的数学公式的物理原型。引用《The origin of power-law emergent scaling in large binary networks》
    
* [[Weather]]
 
* [[Weather]]
   −
 
+
气象
     
259

个编辑