第2,130行: |
第2,130行: |
| ===Maxwell's demon=== | | ===Maxwell's demon=== |
| | | |
− | 麦克斯韦的魔鬼
| + | 麦克斯韦的恶魔 |
− | | |
| {{unreferenced|section|date=August 2018}} | | {{unreferenced|section|date=August 2018}} |
| | | |
第2,144行: |
第2,143行: |
| James Clerk Maxwell imagined one container divided into two parts, A and B. Both parts are filled with the same gas at equal temperatures and placed next to each other, separated by a wall. Observing the molecules on both sides, an imaginary demon guards a microscopic trapdoor in the wall. When a faster-than-average molecule from A flies towards the trapdoor, the demon opens it, and the molecule will fly from A to B. The average speed of the molecules in B will have increased while in A they will have slowed down on average. Since average molecular speed corresponds to temperature, the temperature decreases in A and increases in B, contrary to the second law of thermodynamics. | | James Clerk Maxwell imagined one container divided into two parts, A and B. Both parts are filled with the same gas at equal temperatures and placed next to each other, separated by a wall. Observing the molecules on both sides, an imaginary demon guards a microscopic trapdoor in the wall. When a faster-than-average molecule from A flies towards the trapdoor, the demon opens it, and the molecule will fly from A to B. The average speed of the molecules in B will have increased while in A they will have slowed down on average. Since average molecular speed corresponds to temperature, the temperature decreases in A and increases in B, contrary to the second law of thermodynamics. |
| | | |
− | 詹姆斯·克拉克·麦克斯韦想象一个容器分成两部分,a 和 b。两个部分在相同的温度下充入相同的气体,并被一堵墙隔开,挨着放置。通过观察两边的分子,一个想象中的恶魔守卫着墙上的一个微型暗门。当一个来自 a 的比平均速度快的分子飞向活板门时,魔鬼打开了它,分子就会从 a 飞到 b。B 中分子的平均速度会增加,而 a 中分子的平均速度会减慢。由于平均分子速度与温度相对应,因此 a 中的温度降低,b 中的温度升高,这与热力学第二定律相反。
| + | 詹姆斯·克莱克·麦克斯韦(James Clerk Maxwell)设想一个容器分为A和B两部分。两部分均在相同温度下充满相同的气体,并彼此相邻由内壁隔开。观察到两侧的分子,一个虚构的恶魔在墙上守着一个微观活板门。当来自A的速度快于平均水平的分子飞向活板门时,恶魔将其打开,该分子将从A飞向B。B中分子的平均速度将增加,而A中分子的平均速度将平均降低。由于平均分子速度与温度相对应,因此与热力学第二定律相反,温度在A中降低,在B中升高。 |
| | | |
| | | |
第2,154行: |
第2,153行: |
| One response to this question was suggested in 1929 by Leó Szilárd and later by Léon Brillouin. Szilárd pointed out that a real-life Maxwell's demon would need to have some means of measuring molecular speed, and that the act of acquiring information would require an expenditure of energy. | | One response to this question was suggested in 1929 by Leó Szilárd and later by Léon Brillouin. Szilárd pointed out that a real-life Maxwell's demon would need to have some means of measuring molecular speed, and that the act of acquiring information would require an expenditure of energy. |
| | | |
− | 1929年,Leó Szilárd 和后来的 l on brilouin 对这个问题提出了一个答案。Szil rd 指出,现实生活中的麦克斯韦恶魔需要一些测量分子速度的方法,而获取信息需要消耗大量能量。 | + | 1929年,Leó Szilárd和后来的 Léon Brillouin 对这个问题提出了一个答案。Szilárd指出,现实生活中的麦克斯韦恶魔需要一些测量分子速度的方法,而获取信息需要消耗大量能量。 |
| | | |
| | | |
第2,164行: |
第2,163行: |
| Maxwell's 'demon' repeatedly alters the permeability of the wall between A and B. It is therefore performing thermodynamic operations on a microscopic scale, not just observing ordinary spontaneous or natural macroscopic thermodynamic processes. | | Maxwell's 'demon' repeatedly alters the permeability of the wall between A and B. It is therefore performing thermodynamic operations on a microscopic scale, not just observing ordinary spontaneous or natural macroscopic thermodynamic processes. |
| | | |
− | 麦克斯韦的“魔鬼”不断地改变 a 和 b 之间墙体的渗透性。因此,它是在微观尺度上执行热力学操作,而不仅仅是观察普通的自发或自然的宏观热力学过程。
| + | 麦克斯韦的“恶魔”不断地改变 a 和 b 之间墙体的渗透性。因此,它是在微观尺度上执行热力学操作,而不仅仅是观察普通的自发或自然的宏观热力学过程。 |
| | | |
| ==Quotations== | | ==Quotations== |