更改

第161行: 第161行:  
控制理论可分为两个分支:
 
控制理论可分为两个分支:
   −
*[[线性控制理论]]——适用于组件遵循叠加原理的系统,这意味着输出大致与输入成比例。线性系统由线性微分方程决定。其中一个主要的子类是具有不随时间变化的参数的系统,称为线性时不变(LTI)系统。这些系统使用通用且强大的频域数学技术,例如拉普拉斯变换,傅立叶变换,Z-变换,波特图,根轨迹和奈奎斯特稳定性判据。使用这些技术有助于使用带宽,频率响应,特征值,增益,谐振频率,零点和极点等术语对系统进行描述,从而为大多数目标系统提供了系统响应的解决方案和设计方式。
+
*[[线性控制理论]]——适用于符合叠加原理的系统,这意味着输出大致与输入成比例。线性系统由线性微分方程决定,该分类中的最重要的子类是不随时间变化的参数的系统,称为线性时不变(LTI)系统。这些系统使用通用且功能强大的频域数学方法进行表示与计算,例如拉普拉斯变换,傅立叶变换,Z-变换,Bode图,根轨迹和奈奎斯特稳定性判据。使用这些技术有助于使用带宽,频率响应,特征值,增益,谐振频率,零点和极点等术语对系统进行描述,从而为大多数目标系统提供系统响应的解决方案和设计方式。
 
   
 
   
*[[非线性控制理论]]——涵盖了更广泛的不遵循叠加原理的系统类别,并适用于更多实际系统,因为所有实际控制系统都是非线性的。这些系统通常由非线性微分方程决定。这些本就为数不多的针对此类问题的数学技巧不仅更加困难,而且通用性较低,通常仅适用于很少类别的系统。非线性控制理论包括极限环理论,庞加莱图,李雅普诺夫稳定性定理和描述函数。非线性系统通常用数值方法在计算机上进行分析,例如用仿真语言来对系统的运行进行仿真。如果仅关注稳定点附近的解,则通常可以使用微扰理论,用线性系统近似非线性系统,这样就可以使用线性系统的方法进行求解。<ref>[http://www.mathworks.com/help/toolbox/simulink/slref/trim.html trim point]</ref>
+
*[[非线性控制理论]]——涵盖了更广泛的不遵循叠加原理的系统类别,并适用于更多实际系统,因为所有实际控制系统都是非线性的。这些系统通常由非线性微分方程决定。这些本就为数不多的数学方法针对此类问题,描述起来不仅更加困难,而且通用性较低,通常仅适用于很少类别的系统。非线性控制理论包括极限环理论,庞加莱图,李雅普诺夫稳定性定理和描述函数等。非线性系统通常用数值方法在计算机上进行分析,例如用仿真语言来对系统的运行进行仿真。如果仅关注稳定点附近的解,则通常可以使用微扰理论,用线性系统近似非线性系统,这样就可以使用线性系统的方法进行求解。<ref>[http://www.mathworks.com/help/toolbox/simulink/slref/trim.html trim point]</ref>
    
==分析技术-频域和时域==
 
==分析技术-频域和时域==
421

个编辑