第124行: |
第124行: |
| 几乎可以肯定,Wiener 过程的样本路径在任何地方都是连续的,但是没有可微的地方。它可以看作是简单随机游动的连续形式。这个过程作为其他随机过程的数学极限出现,例如某些随机游动的重新标度,这是 Donsker 定理或不变性原理的主题,也被称为函数中心极限定理。 | | 几乎可以肯定,Wiener 过程的样本路径在任何地方都是连续的,但是没有可微的地方。它可以看作是简单随机游动的连续形式。这个过程作为其他随机过程的数学极限出现,例如某些随机游动的重新标度,这是 Donsker 定理或不变性原理的主题,也被称为函数中心极限定理。 |
| | | |
− | ==Examples== | + | ==Examples示例== |
| | | |
| The Wiener process is a member of some important families of stochastic processes, including Markov processes, Lévy processes and Gaussian processes. It plays a central role in quantitative finance, where it is used, for example, in the Black–Scholes–Merton model. The process is also used in different fields, including the majority of natural sciences as well as some branches of social sciences, as a mathematical model for various random phenomena. | | The Wiener process is a member of some important families of stochastic processes, including Markov processes, Lévy processes and Gaussian processes. It plays a central role in quantitative finance, where it is used, for example, in the Black–Scholes–Merton model. The process is also used in different fields, including the majority of natural sciences as well as some branches of social sciences, as a mathematical model for various random phenomena. |
第132行: |
第132行: |
| | | |
| | | |
− | ===Bernoulli process=== | + | ===Bernoulli process伯努利过程=== |
| | | |
| {{Main|Bernoulli process}} | | {{Main|Bernoulli process}} |
| | | |
| + | {{Main |伯努利过程}} |
| | | |
| + | One of the simplest stochastic processes is the [[Bernoulli process]],<ref name="Florescu2014page293"/> which is a sequence of [[independent and identically distributed]] (iid) random variables, where each random variable takes either the value one or zero, say one with probability <math>p</math> and zero with probability <math>1-p</math>. This process can be linked to repeatedly flipping a coin, where the probability of obtaining a head is <math>p</math> and its value is one, while the value of a tail is zero.<ref name="Florescu2014page301">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|page=301}}</ref> In other words, a Bernoulli process is a sequence of [[Independent and identically distributed random variables|iid]] Bernoulli random variables,<ref name="BertsekasTsitsiklis2002page273">{{cite book|author1=Dimitri P. Bertsekas|author2=John N. Tsitsiklis|title=Introduction to Probability|url=https://books.google.com/books?id=bcHaAAAAMAAJ|year=2002|publisher=Athena Scientific|isbn=978-1-886529-40-3|page=273}}</ref> where each coin flip is an example of a [[Bernoulli trial]].<ref name="Ibe2013page11">{{cite book|author=Oliver C. Ibe|title=Elements of Random Walk and Diffusion Processes|url=https://books.google.com/books?id=DUqaAAAAQBAJ&pg=PT10|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-61793-9|page=11}}</ref> |
| | | |
− | One of the simplest stochastic processes is the [[Bernoulli process]],<ref name="Florescu2014page293"/> which is a sequence of [[independent and identically distributed]] (iid) random variables, where each random variable takes either the value one or zero, say one with probability <math>p</math> and zero with probability <math>1-p</math>. This process can be linked to repeatedly flipping a coin, where the probability of obtaining a head is <math>p</math> and its value is one, while the value of a tail is zero.<ref name="Florescu2014page301">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|page=301}}</ref> In other words, a Bernoulli process is a sequence of [[Independent and identically distributed random variables|iid]] Bernoulli random variables,<ref name="BertsekasTsitsiklis2002page273">{{cite book|author1=Dimitri P. Bertsekas|author2=John N. Tsitsiklis|title=Introduction to Probability|url=https://books.google.com/books?id=bcHaAAAAMAAJ|year=2002|publisher=Athena Scientific|isbn=978-1-886529-40-3|page=273}}</ref> where each coin flip is an example of a [[Bernoulli trial]].<ref name="Ibe2013page11">{{cite book|author=Oliver C. Ibe|title=Elements of Random Walk and Diffusion Processes|url=https://books.google.com/books?id=DUqaAAAAQBAJ&pg=PT10|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-61793-9|page=11}}</ref>
| + | 最简单的随机过程之一是[[Bernoulli process]],<ref name=“Florescu2014page293”/>它是[[独立且相同分布]](iid)随机变量的序列,其中每个随机变量取1或0,比如概率<math>p</math>的值为1,概率<math>1-p</math>为零。这个过程可以与反复翻动硬币有关,其中获得头部的概率为<math>p</math>,其值为1,而尾部的值为零=https://books.google.com/books?id=z5sebqaaqbaj&pg=PR22 | year=2014 | publisher=John Wiley&Sons | isbn=978-1-118-59320-2 | page=301}</ref>换句话说,伯努利过程是一个[[独立且同分布随机变量| iid]]伯努利随机变量的序列,<ref name=“Bertsekatsitsiklis2002page273”>{cite book | author1=Dimitri P.Bertsekas | author2=John N.Tsitsiklis | title=概率简介| url=https://books.google.com/books?id=bcHaAAAAMAAJ | year=2002 | publisher=Athena Scientific | isbn=978-1-886529-40-3 | page=273}</ref>每一次抛硬币都是[[Bernoulli审判]]的一个例子。<ref name=“Ibe2013page11”>{cite book | author=Oliver C.Ibe | title=Elements of Random Walk and Diffusion Processes |网址=https://books.google.com/books?id=duqaaaaqbaj&pg=PT10 |年份=2013 | publisher=John Wiley&Sons | isbn=978-1-118-61793-9 | page=11}</ref> |
| | | |
| The Poisson process is a stochastic process that has different forms and definitions. It can be defined as a counting process, which is a stochastic process that represents the random number of points or events up to some time. The number of points of the process that are located in the interval from zero to some given time is a Poisson random variable that depends on that time and some parameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process. The homogeneous Poisson process is a member of important classes of stochastic processes such as Markov processes and Lévy processes. If the parameter constant of the Poisson process is replaced with some non-negative integrable function of <math>t</math>, the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randomly occurring in certain time windows. | | The Poisson process is a stochastic process that has different forms and definitions. It can be defined as a counting process, which is a stochastic process that represents the random number of points or events up to some time. The number of points of the process that are located in the interval from zero to some given time is a Poisson random variable that depends on that time and some parameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process. The homogeneous Poisson process is a member of important classes of stochastic processes such as Markov processes and Lévy processes. If the parameter constant of the Poisson process is replaced with some non-negative integrable function of <math>t</math>, the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randomly occurring in certain time windows. |
第146行: |
第148行: |
| | | |
| | | |
− | ===Random walk=== | + | ===Random walk随机游动=== |
| | | |
| Defined on the real line, the Poisson process can be interpreted as a stochastic process, among other random objects. But then it can be defined on the <math>n</math>-dimensional Euclidean space or other mathematical spaces, where it is often interpreted as a random set or a random counting measure, instead of a stochastic process. But it has been remarked that the Poisson process does not receive as much attention as it should, partly due to it often being considered just on the real line, and not on other mathematical spaces. | | Defined on the real line, the Poisson process can be interpreted as a stochastic process, among other random objects. But then it can be defined on the <math>n</math>-dimensional Euclidean space or other mathematical spaces, where it is often interpreted as a random set or a random counting measure, instead of a stochastic process. But it has been remarked that the Poisson process does not receive as much attention as it should, partly due to it often being considered just on the real line, and not on other mathematical spaces. |
第154行: |
第156行: |
| {{Main|Random walk}} | | {{Main|Random walk}} |
| | | |
− | | + | {{Main |随机漫步}} |
| | | |
| [[Random walks]] are stochastic processes that are usually defined as sums of [[iid]] random variables or random vectors in Euclidean space, so they are processes that change in discrete time.<ref name="Klenke2013page347">{{cite book|author=Achim Klenke|title=Probability Theory: A Comprehensive Course|url=https://books.google.com/books?id=aqURswEACAAJ|year=2013|publisher=Springer|isbn=978-1-4471-5362-7|pages=347}}</ref><ref name="LawlerLimic2010page1">{{cite book|author1=Gregory F. Lawler|author2=Vlada Limic|title=Random Walk: A Modern Introduction|url=https://books.google.com/books?id=UBQdwAZDeOEC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-48876-1|page=1}}</ref><ref name="Kallenberg2002page136">{{cite book|author=Olav Kallenberg|title=Foundations of Modern Probability|url=https://books.google.com/books?id=L6fhXh13OyMC|date= 2002|publisher=Springer Science & Business Media|isbn=978-0-387-95313-7|page=136}}</ref><ref name="Florescu2014page383">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|page=383}}</ref><ref name="Durrett2010page277">{{cite book|author=Rick Durrett|title=Probability: Theory and Examples|url=https://books.google.com/books?id=evbGTPhuvSoC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-49113-6|page=277}}</ref> But some also use the term to refer to processes that change in continuous time,<ref name="Weiss2006page1">{{cite book|last1=Weiss|first1=George H.|title=Encyclopedia of Statistical Sciences|chapter=Random Walks|year=2006|doi=10.1002/0471667196.ess2180.pub2|page=1|isbn=978-0471667193}}</ref> particularly the Wiener process used in finance, which has led to some confusion, resulting in its criticism.<ref name="Spanos1999page454">{{cite book|author=Aris Spanos|title=Probability Theory and Statistical Inference: Econometric Modeling with Observational Data|url=https://books.google.com/books?id=G0_HxBubGAwC|year=1999|publisher=Cambridge University Press|isbn=978-0-521-42408-0|page=454}}</ref> There are other various types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines.<ref name="Weiss2006page1"/><ref name="Klebaner2005page81">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=81}}</ref> | | [[Random walks]] are stochastic processes that are usually defined as sums of [[iid]] random variables or random vectors in Euclidean space, so they are processes that change in discrete time.<ref name="Klenke2013page347">{{cite book|author=Achim Klenke|title=Probability Theory: A Comprehensive Course|url=https://books.google.com/books?id=aqURswEACAAJ|year=2013|publisher=Springer|isbn=978-1-4471-5362-7|pages=347}}</ref><ref name="LawlerLimic2010page1">{{cite book|author1=Gregory F. Lawler|author2=Vlada Limic|title=Random Walk: A Modern Introduction|url=https://books.google.com/books?id=UBQdwAZDeOEC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-48876-1|page=1}}</ref><ref name="Kallenberg2002page136">{{cite book|author=Olav Kallenberg|title=Foundations of Modern Probability|url=https://books.google.com/books?id=L6fhXh13OyMC|date= 2002|publisher=Springer Science & Business Media|isbn=978-0-387-95313-7|page=136}}</ref><ref name="Florescu2014page383">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|page=383}}</ref><ref name="Durrett2010page277">{{cite book|author=Rick Durrett|title=Probability: Theory and Examples|url=https://books.google.com/books?id=evbGTPhuvSoC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-49113-6|page=277}}</ref> But some also use the term to refer to processes that change in continuous time,<ref name="Weiss2006page1">{{cite book|last1=Weiss|first1=George H.|title=Encyclopedia of Statistical Sciences|chapter=Random Walks|year=2006|doi=10.1002/0471667196.ess2180.pub2|page=1|isbn=978-0471667193}}</ref> particularly the Wiener process used in finance, which has led to some confusion, resulting in its criticism.<ref name="Spanos1999page454">{{cite book|author=Aris Spanos|title=Probability Theory and Statistical Inference: Econometric Modeling with Observational Data|url=https://books.google.com/books?id=G0_HxBubGAwC|year=1999|publisher=Cambridge University Press|isbn=978-0-521-42408-0|page=454}}</ref> There are other various types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines.<ref name="Weiss2006page1"/><ref name="Klebaner2005page81">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=81}}</ref> |
| | | |
| + | [[Random walks]]是随机过程,通常定义为欧几里德空间中[[iid]]随机变量或随机向量的和,因此它们是离散时间变化的过程=https://books.google.com/books?id=aqURswEACAAJ | year=2013 | publisher=Springer | isbn=978-1-4471-5362-7 | pages=347}</ref><ref name=“LawlerLimic2010page1”>{cite book | author1=Gregory F.Lawler | author2=Vlada Limic | title=Random Walk:A Modern Introduction |网址=https://books.google.com/books?id=UBQdwAZDeOEC | year=2010 | publisher=Cambridge University Press | isbn=978-1-139-48876-1 | page=1}</ref><ref name=“Kallenberg 2002page136”>{cite book |作者=Olav Kallenberg | title=Foundations of Modern Probability |网址=https://books.google.com/books?id=L6fhXh13OyMC | date=2002 | publisher=Springer Science&Business Media | isbn=978-0-387-95313-7 | page=136}</ref><ref name=“Florescu2014page383”>{cite book | author=Ionut Florescu | title=概率与随机过程| url=https://books.google.com/books?id=z5sebqaaqbaj&pg=PR22 | year=2014 | publisher=John Wiley&Sons | isbn=978-1-118-59320-2 | page=383}}</ref><ref name=“Durrett2010page277”>{引用图书|作者=Rick Durrett | title=Probability:理论和示例| url=https://books.google.com/books?id=evbGTPhuvSoC | year=2010 | publisher=Cambridge University Press | isbn=978-1-139-49113-6 | page=277}</ref>但是有些人也使用这个术语来指代连续时间变化的过程,<ref name=“Weiss2006page1”>{cite book | last1=Weiss | first1=George H.| title=Statistical Sciences | chapter=Random Walks | year=2006 | doi=10.1002/0471667196.ess2180.pub2 | page=1 | isbn=978-0471667193}}</ref>尤其是金融中使用的维纳过程,这导致了一些混乱,导致其受到批评。<ref name=“Spanos1999page454”>{cite book | author=Aris Spanos | title=概率论和统计推断:观测数据的计量经济学建模|网址=https://books.google.com/books?id=G0|HxBubGAwC | year=1999 | publisher=Cambridge University Press | isbn=978-0-521-42408-0 | page=454}}</ref>还有其他各种类型的随机游动,它们的状态空间可以是其他数学对象,例如格和群,一般来说,它们都是高度研究的,在不同的学科中有许多应用。<ref name=“Weiss2006page1”/><ref name=“Klebaner2005page81”>{cite book | author=Fima C.Klebaner | title=随机微积分及其应用简介=https://books.google.com/books?id=JYzW0uqQxB0C | year=2005 | publisher=Imperial College Press | isbn=978-1-86094-555-7 | page=81}</ref> |
| | | |
| + | A classic example of a random walk is known as the ''simple random walk'', which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, <math>p</math>, or decreases by one with probability <math>1-p</math>, so the index set of this random walk is the natural numbers, while its state space is the integers. If the <math>p=0.5</math>, this random walk is called a symmetric random walk.<ref name="Gut2012page88">{{cite book|author=Allan Gut|title=Probability: A Graduate Course|url=https://books.google.com/books?id=XDFA-n_M5hMC|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4614-4708-5|page=88}}</ref><ref name="GrimmettStirzaker2001page71">{{cite book|author1=Geoffrey Grimmett|author2=David Stirzaker|title=Probability and Random Processes|url=https://books.google.com/books?id=G3ig-0M4wSIC|year=2001|publisher=OUP Oxford|isbn=978-0-19-857222-0|page=71}}</ref> |
| | | |
− | A classic example of a random walk is known as the ''simple random walk'', which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, <math>p</math>, or decreases by one with probability <math>1-p</math>, so the index set of this random walk is the natural numbers, while its state space is the integers. If the <math>p=0.5</math>, this random walk is called a symmetric random walk.<ref name="Gut2012page88">{{cite book|author=Allan Gut|title=Probability: A Graduate Course|url=https://books.google.com/books?id=XDFA-n_M5hMC|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4614-4708-5|page=88}}</ref><ref name="GrimmettStirzaker2001page71">{{cite book|author1=Geoffrey Grimmett|author2=David Stirzaker|title=Probability and Random Processes|url=https://books.google.com/books?id=G3ig-0M4wSIC|year=2001|publisher=OUP Oxford|isbn=978-0-19-857222-0|page=71}}</ref>
| + | 随机游动的一个经典例子被称为“简单随机游动”,它是一个离散时间的随机过程,以整数为状态空间,它基于伯努利过程,其中每个贝努利变量取正值或负值。换言之,简单随机游走发生在整数上,其值随概率增加1,例如,<math>p</math>,或随着概率<math>1-p</math>而减小1,因此这种随机游动的指标集是自然数,而其状态空间是整数。如果<math>p=0.5</math>,这种随机游动称为对称随机游动。<ref name=“Gut2012page88”>{cite book | author=Allan Gut | title=Probability:a Graduate Course=https://books.google.com/books?id=XDFA-n|M5hMC | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4614-4708-5 | page=88}</ref><ref name=“grimmetttstirzaker2001page71”>{引用图书| author1=Geoffrey Grimmett | author2=David Stirzaker | title=概率和随机过程| url=https://books.google.com/books?id=G3ig-0M4wSIC |年份=2001 | publisher=OUP Oxford | isbn=978-0-19-857222-0 | page=71}</ref> |
| | | |
| A stochastic process is defined as a collection of random variables defined on a common probability space <math>(\Omega, \mathcal{F}, P)</math>, where <math>\Omega</math> is a sample space, <math>\mathcal{F}</math> is a <math>\sigma</math>-algebra, and <math>P</math> is a probability measure; and the random variables, indexed by some set <math>T</math>, all take values in the same mathematical space <math>S</math>, which must be measurable with respect to some <math>\sigma</math>-algebra <math>\Sigma</math>. | | A stochastic process is defined as a collection of random variables defined on a common probability space <math>(\Omega, \mathcal{F}, P)</math>, where <math>\Omega</math> is a sample space, <math>\mathcal{F}</math> is a <math>\sigma</math>-algebra, and <math>P</math> is a probability measure; and the random variables, indexed by some set <math>T</math>, all take values in the same mathematical space <math>S</math>, which must be measurable with respect to some <math>\sigma</math>-algebra <math>\Sigma</math>. |
第187行: |
第191行: |
| | | |
| The Wiener process is a stochastic process with stationary and [[independent increments]] that are [[normally distributed]] based on the size of the increments.<ref name="RogersWilliams2000page1">{{cite book|author1=L. C. G. Rogers|author2=David Williams|title=Diffusions, Markov Processes, and Martingales: Volume 1, Foundations|url=https://books.google.com/books?id=W0ydAgAAQBAJ&pg=PA1|year=2000|publisher=Cambridge University Press|isbn=978-1-107-71749-7|page=1}}</ref><ref name="Klebaner2005page56">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=56}}</ref> The Wiener process is named after [[Norbert Wiener]], who proved its mathematical existence, but the process is also called the Brownian motion process or just Brownian motion due to its historical connection as a model for [[Brownian movement]] in liquids.<ref name="Brush1968page1">{{cite journal|last1=Brush|first1=Stephen G.|title=A history of random processes|journal=Archive for History of Exact Sciences|volume=5|issue=1|year=1968|pages=1–2|issn=0003-9519|doi=10.1007/BF00328110}}</ref><ref name="Applebaum2004page1338">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|pages=1338}}</ref><ref name="Applebaum2004page1338"/><ref name="GikhmanSkorokhod1969page21">{{cite book|author1=Iosif Ilyich Gikhman|author2=Anatoly Vladimirovich Skorokhod|title=Introduction to the Theory of Random Processes|url=https://books.google.com/books?id=yJyLzG7N7r8C&pg=PR2|year=1969|publisher=Courier Corporation|isbn=978-0-486-69387-3|page=21}}</ref> | | The Wiener process is a stochastic process with stationary and [[independent increments]] that are [[normally distributed]] based on the size of the increments.<ref name="RogersWilliams2000page1">{{cite book|author1=L. C. G. Rogers|author2=David Williams|title=Diffusions, Markov Processes, and Martingales: Volume 1, Foundations|url=https://books.google.com/books?id=W0ydAgAAQBAJ&pg=PA1|year=2000|publisher=Cambridge University Press|isbn=978-1-107-71749-7|page=1}}</ref><ref name="Klebaner2005page56">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=56}}</ref> The Wiener process is named after [[Norbert Wiener]], who proved its mathematical existence, but the process is also called the Brownian motion process or just Brownian motion due to its historical connection as a model for [[Brownian movement]] in liquids.<ref name="Brush1968page1">{{cite journal|last1=Brush|first1=Stephen G.|title=A history of random processes|journal=Archive for History of Exact Sciences|volume=5|issue=1|year=1968|pages=1–2|issn=0003-9519|doi=10.1007/BF00328110}}</ref><ref name="Applebaum2004page1338">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|pages=1338}}</ref><ref name="Applebaum2004page1338"/><ref name="GikhmanSkorokhod1969page21">{{cite book|author1=Iosif Ilyich Gikhman|author2=Anatoly Vladimirovich Skorokhod|title=Introduction to the Theory of Random Processes|url=https://books.google.com/books?id=yJyLzG7N7r8C&pg=PR2|year=1969|publisher=Courier Corporation|isbn=978-0-486-69387-3|page=21}}</ref> |
| + | |
| + | Wiener过程是一个随机过程,具有平稳的[[独立的增量]]并且基于增量的大小是[[正态分布的].<ref name=“RogersWilliams2000page1”>{cite book | author1=L.C.G.Rogers | author2=David Williams | title=扩散、马尔可夫过程和鞅:第1卷,基金会网址=https://books.google.com/books?id=W0ydAgAAQBAJ&pg=PA1 | year=2000 | publisher=Cambridge University Press | isbn=978-1-107-71749-7 | page=1}</ref><ref name=“Klebaner2005page56”>{cite book | author=Fima C.Klebaner | title=随机微积分及其应用简介|网址=https://books.google.com/books?id=JYzW0uqQxB0C | year=2005 | publisher=Imperial College Press | isbn=978-1-86094-555-7 | page=56}</ref>维纳过程是以[[Norbert Wiener]]命名的,他证明了它的数学存在性,但是这个过程也被称为布朗运动过程或仅仅是布朗运动,因为它是液体中[[布朗运动]]的模型科学|卷=5 |议题=1 |年份=1968 |页数=1-2 | issn=0003-9519 | doi=10.1007/BF00328110}}</ref><ref name=“applebauma2004page1338”{{{引用杂志| last1=Applebaum | first1=David | title=Lévy过程:从概率到金融和量子群的概率到金融和量子群| journal=Na从概率到金融和量子群| journal=通知AMS | volume=51 | volume=11;年份=2004 |页数=1338}</ref><refname=“Applebaum2004page1338”/><ref name=“GikhmanSkorokhod1969page21”>{cite book | author1=Iosif Ilyich Gikhman | author2=Anatoly Vladimirovich skorokod | title=随机过程理论简介| url=https://books.google.com/books?id=yJyLzG7N7r8C&pg=PR2 |年份=1969 | publisher=Courier Corporation | isbn=978-0-486-69387-3 | page=21}</ref> |
| | | |
| Historically, in many problems from the natural sciences a point <math>t\in T</math> had the meaning of time, so <math>X(t)</math> is a random variable representing a value observed at time <math>t</math>. A stochastic process can also be written as <math> \{X(t,\omega):t\in T \}</math> to reflect that it is actually a function of two variables, <math>t\in T</math> and <math>\omega\in \Omega</math>. | | Historically, in many problems from the natural sciences a point <math>t\in T</math> had the meaning of time, so <math>X(t)</math> is a random variable representing a value observed at time <math>t</math>. A stochastic process can also be written as <math> \{X(t,\omega):t\in T \}</math> to reflect that it is actually a function of two variables, <math>t\in T</math> and <math>\omega\in \Omega</math>. |
第195行: |
第201行: |
| | | |
| [[File:DriftedWienerProcess1D.svg|thumb|left|Realizations of Wiener processes (or Brownian motion processes) with drift ({{color|blue|blue}}) and without drift ({{color|red|red}}).]] | | [[File:DriftedWienerProcess1D.svg|thumb|left|Realizations of Wiener processes (or Brownian motion processes) with drift ({{color|blue|blue}}) and without drift ({{color|red|red}}).]] |
| + | |
| + | [[文件:floadWienerProcess1d.svg|拇指|左|实现Wiener过程(或布朗运动过程),具有漂移({color |蓝色}且不漂移({color |红色}红色})。]] |
| | | |
| There are other ways to consider a stochastic process, with the above definition being considered the traditional one. For example, a stochastic process can be interpreted or defined as a <math>S^T</math>-valued random variable, where <math>S^T</math> is the space of all the possible <math>S</math>-valued functions of <math>t\in T</math> that map from the set <math>T</math> into the space <math>S</math>. of the stochastic process. Often this set is some subset of the real line, such as the natural numbers or an interval, giving the set <math>T</math> the interpretation of time. such as the Cartesian plane <math>R^2</math> or <math>n</math>-dimensional Euclidean space, where an element <math>t\in T</math> can represent a point in space. But in general more results and theorems are possible for stochastic processes when the index set is ordered. | | There are other ways to consider a stochastic process, with the above definition being considered the traditional one. For example, a stochastic process can be interpreted or defined as a <math>S^T</math>-valued random variable, where <math>S^T</math> is the space of all the possible <math>S</math>-valued functions of <math>t\in T</math> that map from the set <math>T</math> into the space <math>S</math>. of the stochastic process. Often this set is some subset of the real line, such as the natural numbers or an interval, giving the set <math>T</math> the interpretation of time. such as the Cartesian plane <math>R^2</math> or <math>n</math>-dimensional Euclidean space, where an element <math>t\in T</math> can represent a point in space. But in general more results and theorems are possible for stochastic processes when the index set is ordered. |
第204行: |
第212行: |
| Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes.<ref name="doob1953stochasticP46to47"/><ref name="RogersWilliams2000page1"/><ref name="Steele2012page29">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=29}}</ref><ref name="Florescu2014page471">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|page=471}}</ref><ref name="KarlinTaylor2012page21">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|pages=21, 22}}</ref><ref name="KaratzasShreve2014pageVIII">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=VIII}}</ref><ref name="RevuzYor2013pageIX">{{cite book|author1=Daniel Revuz|author2=Marc Yor|title=Continuous Martingales and Brownian Motion|url=https://books.google.com/books?id=OYbnCAAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-06400-9|page=IX|author1-link=Daniel Revuz}}</ref> Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space.<ref name="Rosenthal2006page186">{{cite book|author=Jeffrey S Rosenthal|title=A First Look at Rigorous Probability Theory|url=https://books.google.com/books?id=am1IDQAAQBAJ|year=2006|publisher=World Scientific Publishing Co Inc|isbn=978-981-310-165-4|page=186}}</ref> But the process can be defined more generally so its state space can be <math>n</math>-dimensional Euclidean space.<ref name="Klebaner2005page81"/><ref name="KarlinTaylor2012page21"/><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|page=33}}</ref> If the [[mean]] of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant <math> \mu</math>, which is a real number, then the resulting stochastic process is said to have drift <math> \mu</math>.<ref name="Steele2012page118">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=118}}</ref><ref name="MörtersPeres2010page1"/><ref name="KaratzasShreve2014page78">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=78}}</ref> | | Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes.<ref name="doob1953stochasticP46to47"/><ref name="RogersWilliams2000page1"/><ref name="Steele2012page29">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=29}}</ref><ref name="Florescu2014page471">{{cite book|author=Ionut Florescu|title=Probability and Stochastic Processes|url=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22|year=2014|publisher=John Wiley & Sons|isbn=978-1-118-59320-2|page=471}}</ref><ref name="KarlinTaylor2012page21">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|pages=21, 22}}</ref><ref name="KaratzasShreve2014pageVIII">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=VIII}}</ref><ref name="RevuzYor2013pageIX">{{cite book|author1=Daniel Revuz|author2=Marc Yor|title=Continuous Martingales and Brownian Motion|url=https://books.google.com/books?id=OYbnCAAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-06400-9|page=IX|author1-link=Daniel Revuz}}</ref> Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space.<ref name="Rosenthal2006page186">{{cite book|author=Jeffrey S Rosenthal|title=A First Look at Rigorous Probability Theory|url=https://books.google.com/books?id=am1IDQAAQBAJ|year=2006|publisher=World Scientific Publishing Co Inc|isbn=978-981-310-165-4|page=186}}</ref> But the process can be defined more generally so its state space can be <math>n</math>-dimensional Euclidean space.<ref name="Klebaner2005page81"/><ref name="KarlinTaylor2012page21"/><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|page=33}}</ref> If the [[mean]] of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant <math> \mu</math>, which is a real number, then the resulting stochastic process is said to have drift <math> \mu</math>.<ref name="Steele2012page118">{{cite book|author=J. Michael Steele|title=Stochastic Calculus and Financial Applications|url=https://books.google.com/books?id=fsgkBAAAQBAJ&pg=PR4|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4684-9305-4|page=118}}</ref><ref name="MörtersPeres2010page1"/><ref name="KaratzasShreve2014page78">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=78}}</ref> |
| | | |
− | | + | Wiener过程在概率论中起着中心作用,通常被认为是最重要和研究的随机过程,并与其他随机过程联系在一起微积分与金融应用|网址=https://books.google.com/books?id=fsgkbaaqbaj&pg=PR4 | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4684-9305-4 | page=29}</ref><ref name=“florescu214page471”>{cite book |作者=Ionut Florescu | title=概率与随机过程|网址=https://books.google.com/books?id=Z5xEBQAAQBAJ&pg=PR22 | year=2014 | publisher=John Wiley&Sons | isbn=978-1-118-59320-2 | page=471}</ref><ref name=“KarlinTaylor2012page21”>{cite book | author1=Samuel Karlin | author2=Howard E.Taylor | title=随机过程的第一门课程| url=https://books.google.com/books?id=dSDxjX9nmmMC | year=2012 | publisher=academical Press | isbn=978-0-08-057041-9 | pages=21,22}</ref><ref name=“karatzarshreeve2014pageviii”{引用图书| author1=Ioannis Karatzas | author2=Steven Shreve | title=布朗运动和随机微积分| url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5 | year=1991;publisher=Springer | isbn=978-1-4612-0949-2 | page=VIII}</ref><ref name=“RevuzYor2013pageIX”>{cite book | author1=Daniel Revuz | author2=Marc Yor| title=连续鞅和布朗运动| url=https://books.google.com/books?id=oybncaaqbaj | year=2013 | publisher=Springer Science&Business Media | isbn=978-3-662-06400-9 | page=IX | author1 link=Daniel Revuz}</ref>其索引集和状态空间分别是非负数和实数,因此它既有连续索引集又有状态空间=https://books.google.com/books?id=am1IDQAAQBAJ | year=2006 | publisher=World Scientific Publishing Co Inc | isbn=978-981-310-165-4 | page=186}</ref>但是过程可以定义得更广泛,这样它的状态空间可以是维欧几里德空间。<ref name=“klebaner205page81”/><ref name=“KarlinTaylor2012page21”/><ref>{cite book | author1=Donald L。Snyder | author2=Michael I.Miller | title=时空中的随机点过程| url=https://books.google.com/books?id=c_3UBwAAQBAJ | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4612-3166-0 | page=33}</ref>如果任何增量的[[平均值]]为零,则所得到的维纳或布朗运动过程称为零漂移。如果任意两个时间点的增量的平均值等于时间差乘以某个常数<math>\mu</math>,即实数,由此产生的随机过程被称为漂移<math>\mu</math><ref name=“Steele2012page118”>{cite book | author=J.Michael Steele | title=随机微积分和金融应用程序| url=https://books.google.com/books?id=fsgkbaaqbaj&pg=PR4 | year=2012 | publisher=Springer Science&Business Media | isbn=978-1-4684-9305-4 | page=118}</ref><ref name=“MörtersPeres2010page1”/><ref name=“Karatzasshreeve2014page78”>{cite book | author1=Ioannis Karatzas | author2=Steven Shreve | title=布朗运动和随机演算| url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5 |年份=1991 | publisher=Springer | isbn=978-1-4612-0949-2 | page=78}</ref> |
| | | |
| The mathematical space <math>S</math> of a stochastic process is called its state space. This mathematical space can be defined using integers, real lines, <math>n</math>-dimensional Euclidean spaces, complex planes, or more abstract mathematical spaces. The state space is defined using elements that reflect the different values that the stochastic process can take. | | The mathematical space <math>S</math> of a stochastic process is called its state space. This mathematical space can be defined using integers, real lines, <math>n</math>-dimensional Euclidean spaces, complex planes, or more abstract mathematical spaces. The state space is defined using elements that reflect the different values that the stochastic process can take. |
第212行: |
第220行: |
| [[Almost surely]], a sample path of a Wiener process is continuous everywhere but [[nowhere differentiable function|nowhere differentiable]]. It can be considered as a continuous version of the simple random walk.<ref name="Applebaum2004page1337">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|page=1337}}</ref><ref name="MörtersPeres2010page1">{{cite book|author1=Peter Mörters|author2=Yuval Peres|title=Brownian Motion|url=https://books.google.com/books?id=e-TbA-dSrzYC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-48657-6|pages=1, 3}}</ref> The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled,<ref name="KaratzasShreve2014page61">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=61}}</ref><ref name="Shreve2004page93">{{cite book|author=Steven E. Shreve|title=Stochastic Calculus for Finance II: Continuous-Time Models|url=https://books.google.com/books?id=O8kD1NwQBsQC|year=2004|publisher=Springer Science & Business Media|isbn=978-0-387-40101-0|page=93}}</ref> which is the subject of [[Donsker's theorem]] or invariance principle, also known as the functional central limit theorem.<ref name="Kallenberg2002page225and260">{{cite book|author=Olav Kallenberg|title=Foundations of Modern Probability|url=https://books.google.com/books?id=L6fhXh13OyMC|year=2002|publisher=Springer Science & Business Media|isbn=978-0-387-95313-7|pages=225, 260}}</ref><ref name="KaratzasShreve2014page70">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=70}}</ref><ref name="MörtersPeres2010page131">{{cite book|author1=Peter Mörters|author2=Yuval Peres|title=Brownian Motion|url=https://books.google.com/books?id=e-TbA-dSrzYC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-48657-6|page=131}}</ref> | | [[Almost surely]], a sample path of a Wiener process is continuous everywhere but [[nowhere differentiable function|nowhere differentiable]]. It can be considered as a continuous version of the simple random walk.<ref name="Applebaum2004page1337">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|page=1337}}</ref><ref name="MörtersPeres2010page1">{{cite book|author1=Peter Mörters|author2=Yuval Peres|title=Brownian Motion|url=https://books.google.com/books?id=e-TbA-dSrzYC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-48657-6|pages=1, 3}}</ref> The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled,<ref name="KaratzasShreve2014page61">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=61}}</ref><ref name="Shreve2004page93">{{cite book|author=Steven E. Shreve|title=Stochastic Calculus for Finance II: Continuous-Time Models|url=https://books.google.com/books?id=O8kD1NwQBsQC|year=2004|publisher=Springer Science & Business Media|isbn=978-0-387-40101-0|page=93}}</ref> which is the subject of [[Donsker's theorem]] or invariance principle, also known as the functional central limit theorem.<ref name="Kallenberg2002page225and260">{{cite book|author=Olav Kallenberg|title=Foundations of Modern Probability|url=https://books.google.com/books?id=L6fhXh13OyMC|year=2002|publisher=Springer Science & Business Media|isbn=978-0-387-95313-7|pages=225, 260}}</ref><ref name="KaratzasShreve2014page70">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=70}}</ref><ref name="MörtersPeres2010page131">{{cite book|author1=Peter Mörters|author2=Yuval Peres|title=Brownian Motion|url=https://books.google.com/books?id=e-TbA-dSrzYC|year=2010|publisher=Cambridge University Press|isbn=978-1-139-48657-6|page=131}}</ref> |
| | | |
| + | [[几乎可以肯定]],Wiener过程的样本路径处处连续,但[[无处可微函数|无处可微]]。它可以看作是简单随机游走的一个连续版本。<ref name=“Applebaum2004page1337”>{cite journal | last1=Applebaum | first1=David | title=Lévy过程:从概率到金融和量子群| journal=AMS的通知| volume=51 | issue=11 | year=2004|page=1337}</ref name=“MörtersPeres2010page1”>{citebook | author1=Peter Mörters | author2=Yuval Peres | title=布朗运动|网址=https://books.google.com/books?id=e-TbA-dSrzYC | year=2010 | publisher=Cambridge University Press | isbn=978-1-139-48657-6 | pages=1,3}}</ref>当其他随机过程(如某些随机游动重新缩放)的数学极限时,该过程出现,<ref name=“KaratzasShreve2014page61”>{cite book | author1=Ioannis Karatzas | author2=Steven Shreve | title=布朗运动和随机微积分| url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5 | year=1991 | publisher=Springer | isbn=978-1-4612-0949-2 | page=61}</ref><ref name=“Shreve2004page93”>{cite book |作者=Steven E.Shreve | title=金融随机微积分II:连续时间模型| url=https://books.google.com/books?id=O8kD1NwQBsQC | year=2004 | publisher=Springer Science&Business Media | isbn=978-0-387-40101-0 | page=93}</ref>这是[[Donsker定理]]或不变性原理的主题,也被称为函数中心极限定理=https://books.google.com/books?id=L6fhXh13OyMC | year=2002 | publisher=Springer Science&Business Media | isbn=978-0-387-95313-7 | pages=225260}}</ref><ref name=“karatzarshreve2014page70”{引用图书| author1=Ioannis Karatzas | author2=Steven Shreve | title=布朗运动和随机演算| url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991;publisher=Springer | isbn=978-1-4612-0949-2 | page=70}</ref><ref name=“MörtersPeres2010page131”>{cite book | author1=Peter Mörters | author2=Yuval Peres | title=布朗运动| url=https://books.google.com/books?id=e-TbA-dSrzYC |年=2010 | publisher=剑桥大学出版社| isbn=978-1-139-48657-6 | page=131}</ref> |
| | | |
| + | The Wiener process is a member of some important families of stochastic processes, including Markov processes, Lévy processes and Gaussian processes.<ref name="RogersWilliams2000page1"/><ref name="Applebaum2004page1337"/> The process also has many applications and is the main stochastic process used in stochastic calculus.<ref name="Klebaner2005">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7}}</ref><ref name="KaratzasShreve2014page">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2}}</ref> It plays a central role in quantitative finance,<ref name="Applebaum2004page1341">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|page=1341}}</ref><ref name="KarlinTaylor2012page340">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=340}}</ref> where it is used, for example, in the Black–Scholes–Merton model.<ref name="Klebaner2005page124">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=124}}</ref> The process is also used in different fields, including the majority of natural sciences as well as some branches of social sciences, as a mathematical model for various random phenomena.<ref name="Steele2012page29"/><ref name="KaratzasShreve2014page47">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=47}}</ref><ref name="Wiersema2008page2">{{cite book|author=Ubbo F. Wiersema|title=Brownian Motion Calculus|url=https://books.google.com/books?id=0h-n0WWuD9cC|year=2008|publisher=John Wiley & Sons|isbn=978-0-470-02171-2|page=2}}</ref> |
| | | |
− | The Wiener process is a member of some important families of stochastic processes, including Markov processes, Lévy processes and Gaussian processes.<ref name="RogersWilliams2000page1"/><ref name="Applebaum2004page1337"/> The process also has many applications and is the main stochastic process used in stochastic calculus.<ref name="Klebaner2005">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7}}</ref><ref name="KaratzasShreve2014page">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2}}</ref> It plays a central role in quantitative finance,<ref name="Applebaum2004page1341">{{cite journal|last1=Applebaum|first1=David|title=Lévy processes: From probability to finance and quantum groups|journal=Notices of the AMS|volume=51|issue=11|year=2004|page=1341}}</ref><ref name="KarlinTaylor2012page340">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=340}}</ref> where it is used, for example, in the Black–Scholes–Merton model.<ref name="Klebaner2005page124">{{cite book|author=Fima C. Klebaner|title=Introduction to Stochastic Calculus with Applications|url=https://books.google.com/books?id=JYzW0uqQxB0C|year=2005|publisher=Imperial College Press|isbn=978-1-86094-555-7|page=124}}</ref> The process is also used in different fields, including the majority of natural sciences as well as some branches of social sciences, as a mathematical model for various random phenomena.<ref name="Steele2012page29"/><ref name="KaratzasShreve2014page47">{{cite book|author1=Ioannis Karatzas|author2=Steven Shreve|title=Brownian Motion and Stochastic Calculus|url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5|year=1991|publisher=Springer|isbn=978-1-4612-0949-2|page=47}}</ref><ref name="Wiersema2008page2">{{cite book|author=Ubbo F. Wiersema|title=Brownian Motion Calculus|url=https://books.google.com/books?id=0h-n0WWuD9cC|year=2008|publisher=John Wiley & Sons|isbn=978-0-470-02171-2|page=2}}</ref>
| + | 维纳过程是一些重要的随机过程家族的成员,包括马尔可夫过程,Lévy过程和高斯过程。<ref name=“RogersWilliams2000page1”/><ref name=“Applebaum2004page1337”/>该过程也有许多应用,是随机微积分中使用的主要随机过程。<ref name=“Klebaner2005”>{cite book | author=Fima C.Klebaner | title=随机微积分简介应用程序| url=https://books.google.com/books?id=JYzW0uqQxB0C | year=2005 | publisher=Imperial College Press | isbn=978-1-86094-555-7}</ref><ref name=“KaratzasShreve2014page”>{引用图书| author1=Ioannis Karatzas | author2=Steven Shreve | title=布朗运动和随机微积分| url=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5 | year=1991 | publisher=Springer | isbn=978-1-4612-0949-2}</ref>它在数量金融中起着核心作用,{{本刊|从概率到金融金融和量子集团的过程〈124; journal从概率到金融和量子群的群| journal=journal=金融金融和量子群群| journal=noticof the AMS | volume=51 | issue=11 |年=2004年2004年| page=1341}}</ref><ref name=“KarlinTaylor2012page340 340{引用书〈author1=author1=Samuel Karlin | author1=Samuel Karlin;author2=Howard2=Howarde.Taylor | Howarde.Taylor标题=第一门课程随机过程| url=https://books.google.com/books?id=dSDxjX9nmmMC | year=2012 | publisher=academical Press | isbn=978-0-08-057041-9 | page=340}</ref>在Black-Scholes-Merton模型中使用它。<ref name=“Klebaner2005page124”>{cite book | author=Fima C.Klebaner | title=Introduction to Rastic Calculation with Applications |网址=https://books.google.com/books?id=JYzW0uqQxB0C | year=2005 | publisher=Imperial College Press | isbn=978-1-86094-555-7 | page=124}</ref>该过程也被用于不同的领域,包括大多数自然科学以及社会科学的一些分支,作为各种随机现象的数学模型=https://books.google.com/books?id=w0SgBQAAQBAJ&pg=PT5 | year=1991 | publisher=Springer | isbn=978-1-4612-0949-2 | page=47}</ref><ref name=“Wiersema2008page2”>{cite book |作者=Ubbo F.Wiersema | title=布朗运动演算| url=https://books.google.com/books?id=0h-n0WWuD9cC |年=2008 | publisher=John Wiley&Sons | isbn=978-0-470-02171-2 | page=2}</ref> |
| | | |
| A sample function is a single outcome of a stochastic process, so it is formed by taking a single possible value of each random variable of the stochastic process. More precisely, if <math>\{X(t,\omega):t\in T \}</math> is a stochastic process, then for any point <math>\omega\in\Omega</math>, the mapping | | A sample function is a single outcome of a stochastic process, so it is formed by taking a single possible value of each random variable of the stochastic process. More precisely, if <math>\{X(t,\omega):t\in T \}</math> is a stochastic process, then for any point <math>\omega\in\Omega</math>, the mapping |
第246行: |
第256行: |
| The Poisson process is a stochastic process that has different forms and definitions.<ref name="Tijms2003page1">{{cite book|author=Henk C. Tijms|title=A First Course in Stochastic Models|url=https://books.google.com/books?id=eBeNngEACAAJ|year=2003|publisher=Wiley|isbn=978-0-471-49881-0|pages=1, 2}}</ref><ref name="DaleyVere-Jones2006chap2">{{cite book|author1=D.J. Daley|author2=D. Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods|url=https://books.google.com/books?id=6Sv4BwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21564-8|pages=19–36}}</ref> It can be defined as a counting process, which is a stochastic process that represents the random number of points or events up to some time. The number of points of the process that are located in the interval from zero to some given time is a Poisson random variable that depends on that time and some parameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process.<ref name="Tijms2003page1"/> | | The Poisson process is a stochastic process that has different forms and definitions.<ref name="Tijms2003page1">{{cite book|author=Henk C. Tijms|title=A First Course in Stochastic Models|url=https://books.google.com/books?id=eBeNngEACAAJ|year=2003|publisher=Wiley|isbn=978-0-471-49881-0|pages=1, 2}}</ref><ref name="DaleyVere-Jones2006chap2">{{cite book|author1=D.J. Daley|author2=D. Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods|url=https://books.google.com/books?id=6Sv4BwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21564-8|pages=19–36}}</ref> It can be defined as a counting process, which is a stochastic process that represents the random number of points or events up to some time. The number of points of the process that are located in the interval from zero to some given time is a Poisson random variable that depends on that time and some parameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process.<ref name="Tijms2003page1"/> |
| | | |
| + | {124jms{124tik=随机过程的定义是不同的=https://books.google.com/books?id=eBeNngEACAAJ | year=2003 | publisher=Wiley | isbn=978-0-471-49881-0 | pages=1,2}</ref><ref name=“daleyviere-Jones 2006chap2”>{cite book | author1=D.J.Daley | author2=D.Vere Jones | title=点过程理论导论:第一卷:基本理论与方法|网址=https://books.google.com/books?id=6Sv4BwAAQBAJ | year=2006 | publisher=Springer Science&Business Media | isbn=978-0-387-21564-8 | pages=19–36}</ref>它可以定义为一个计数过程,它是一个随机过程,表示某个时间点或事件的随机数量。在从零到某个给定时间区间内的过程点的数目是一个泊松随机变量,它取决于该时间和某个参数。该过程以自然数为状态空间,非负数为索引集。此过程也称为泊松计数过程,因为它可以被解释为计数过程的一个示例。<ref name=“tijms2303page1”/> |
| | | |
| + | If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process.<ref name="Tijms2003page1"/><ref name="PinskyKarlin2011">{{cite book|author1=Mark A. Pinsky|author2=Samuel Karlin|title=An Introduction to Stochastic Modeling|url=https://books.google.com/books?id=PqUmjp7k1kEC|year=2011|publisher=Academic Press|isbn=978-0-12-381416-6|page=241}}</ref> The homogeneous Poisson process is a member of important classes of stochastic processes such as Markov processes and Lévy processes.<ref name="Applebaum2004page1337"/> |
| | | |
− | If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process.<ref name="Tijms2003page1"/><ref name="PinskyKarlin2011">{{cite book|author1=Mark A. Pinsky|author2=Samuel Karlin|title=An Introduction to Stochastic Modeling|url=https://books.google.com/books?id=PqUmjp7k1kEC|year=2011|publisher=Academic Press|isbn=978-0-12-381416-6|page=241}}</ref> The homogeneous Poisson process is a member of important classes of stochastic processes such as Markov processes and Lévy processes.<ref name="Applebaum2004page1337"/>
| + | 如果一个泊松过程是用一个正常数定义的,那么这个过程称为齐次泊松过程=https://books.google.com/books?id=PqUmjp7k1kEC | year=2011 | publisher=academical Press | isbn=978-0-12-381416-6 | page=241}</ref>齐次泊松过程是随机过程的一个重要类,如马尔可夫过程和Lévy过程 |
| | | |
| An increment of a stochastic process is the difference between two random variables of the same stochastic process. For a stochastic process with an index set that can be interpreted as time, an increment is how much the stochastic process changes over a certain time period. For example, if <math>\{X(t):t\in T \}</math> is a stochastic process with state space <math>S</math> and index set <math>T=[0,\infty)</math>, then for any two non-negative numbers <math>t_1\in [0,\infty)</math> and <math>t_2\in [0,\infty)</math> such that <math>t_1\leq t_2</math>, the difference <math>X_{t_2}-X_{t_1}</math> is a <math>S</math>-valued random variable known as an increment. | | An increment of a stochastic process is the difference between two random variables of the same stochastic process. For a stochastic process with an index set that can be interpreted as time, an increment is how much the stochastic process changes over a certain time period. For example, if <math>\{X(t):t\in T \}</math> is a stochastic process with state space <math>S</math> and index set <math>T=[0,\infty)</math>, then for any two non-negative numbers <math>t_1\in [0,\infty)</math> and <math>t_2\in [0,\infty)</math> such that <math>t_1\leq t_2</math>, the difference <math>X_{t_2}-X_{t_1}</math> is a <math>S</math>-valued random variable known as an increment. |
第257行: |
第269行: |
| | | |
| The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process.<ref name="Kingman1992page38">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=38}}</ref><ref name="DaleyVere-Jones2006page19">{{cite book|author1=D.J. Daley|author2=D. Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods|url=https://books.google.com/books?id=6Sv4BwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21564-8|page=19}}</ref> If the parameter constant of the Poisson process is replaced with some non-negative integrable function of <math>t</math>, the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant.<ref name="Kingman1992page22">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=22}}</ref> Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randomly occurring in certain time windows.<ref name="KarlinTaylor2012page118">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|pages=118, 119}}</ref><ref name="Kleinrock1976page61">{{cite book|author=Leonard Kleinrock|title=Queueing Systems: Theory|url=https://archive.org/details/queueingsystems00klei|url-access=registration|year=1976|publisher=Wiley|isbn=978-0-471-49110-1|page=[https://archive.org/details/queueingsystems00klei/page/61 61]}}</ref> | | The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process.<ref name="Kingman1992page38">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=38}}</ref><ref name="DaleyVere-Jones2006page19">{{cite book|author1=D.J. Daley|author2=D. Vere-Jones|title=An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods|url=https://books.google.com/books?id=6Sv4BwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21564-8|page=19}}</ref> If the parameter constant of the Poisson process is replaced with some non-negative integrable function of <math>t</math>, the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant.<ref name="Kingman1992page22">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=22}}</ref> Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randomly occurring in certain time windows.<ref name="KarlinTaylor2012page118">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|pages=118, 119}}</ref><ref name="Kleinrock1976page61">{{cite book|author=Leonard Kleinrock|title=Queueing Systems: Theory|url=https://archive.org/details/queueingsystems00klei|url-access=registration|year=1976|publisher=Wiley|isbn=978-0-471-49110-1|page=[https://archive.org/details/queueingsystems00klei/page/61 61]}}</ref> |
| + | |
| + | 齐次泊松过程可以用不同的方法定义和推广。它的指标集可以定义为实线,这个随机过程也被称为平稳泊松过程=https://books.google.com/books?id=VEiM OtwDHkC | year=1992 | publisher=Clarendon Press | isbn=978-0-19-159124-2 | page=38}</ref><ref name=“daleyviere-Jones 2006page19”>{引用图书| author1=D.J.Daley | author2=D.Vere Jones | title=点过程理论导论:第一卷:基本理论与方法| url=https://books.google.com/books?id=6Sv4BwAAQBAJ | year=2006 | publisher=Springer Science&Business Media | isbn=978-0-387-21564-8 | page=19}</ref>如果泊松过程的参数常数被某个非负可积函数的<math>t</math>代替,则得到的过程称为非齐次或非齐次Poisson过程,其中过程点的平均密度不再是常数=https://books.google.com/books?id=VEiM OtwDHkC | year=1992 | publisher=Clarendon Press | isbn=978-0-19-159124-2 | page=22}</ref>作为排队论中的一个基本过程,泊松过程是数学模型的一个重要过程,在这里,它找到了在特定时间窗口中随机发生的事件模型的应用程序。<ref name=“KarlinTaylor2012page118”>{cite book | author1=Samuel Karlin | author2=Howard E.Taylor | title=A First Course in randocial Processes |网址=https://books.google.com/books?id=dSDxjX9nmmMC |年份=2012 |出版商=学术出版社| isbn=978-0-08-057041-9 |页数=118,119}}</ref><ref name=“Kleinrock1976page61”>{cite book | author=Leonard Kleinrock | title=排队系统:理论|网址=https://archive.org/details/queueingsystems00klei|url access=registration |年份=1976 | publisher=Wiley | isbn=978-0-471-49110-1 |页=[https://archive.org/details/queueingsystems00klei/page/6161]}}</ref> |
| | | |
| For a measurable subset <math>B</math> of <math>S^T</math>, the pre-image of <math>X</math> gives | | For a measurable subset <math>B</math> of <math>S^T</math>, the pre-image of <math>X</math> gives |
第269行: |
第283行: |
| | | |
| Defined on the real line, the Poisson process can be interpreted as a stochastic process,<ref name="Applebaum2004page1337"/><ref name="Rosenblatt1962page94">{{cite book|author=Murray Rosenblatt|title=Random Processes|url=https://archive.org/details/randomprocesses00rose_0|url-access=registration|year=1962|publisher=Oxford University Press|page=[https://archive.org/details/randomprocesses00rose_0/page/94 94]}}</ref> among other random objects.<ref name="Haenggi2013page10and18">{{cite book|author=Martin Haenggi|title=Stochastic Geometry for Wireless Networks|url=https://books.google.com/books?id=CLtDhblwWEgC|year=2013|publisher=Cambridge University Press|isbn=978-1-107-01469-5|pages=10, 18}}</ref><ref name="ChiuStoyan2013page41and108">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|pages=41, 108}}</ref> But then it can be defined on the <math>n</math>-dimensional Euclidean space or other mathematical spaces,<ref name="Kingman1992page11">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=11}}</ref> where it is often interpreted as a random set or a random counting measure, instead of a stochastic process.<ref name="Haenggi2013page10and18"/><ref name="ChiuStoyan2013page41and108"/> In this setting, the Poisson process, also called the Poisson point process, is one of the most important objects in probability theory, both for applications and theoretical reasons.<ref name="Stirzaker2000"/><ref name="Streit2010page1">{{cite book|author=Roy L. Streit|title=Poisson Point Processes: Imaging, Tracking, and Sensing|url=https://books.google.com/books?id=KAWmFYUJ5zsC&pg=PA11|year=2010|publisher=Springer Science & Business Media|isbn=978-1-4419-6923-1|page=1}}</ref> But it has been remarked that the Poisson process does not receive as much attention as it should, partly due to it often being considered just on the real line, and not on other mathematical spaces.<ref name="Streit2010page1"/><ref name="Kingman1992pagev">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=v}}</ref> | | Defined on the real line, the Poisson process can be interpreted as a stochastic process,<ref name="Applebaum2004page1337"/><ref name="Rosenblatt1962page94">{{cite book|author=Murray Rosenblatt|title=Random Processes|url=https://archive.org/details/randomprocesses00rose_0|url-access=registration|year=1962|publisher=Oxford University Press|page=[https://archive.org/details/randomprocesses00rose_0/page/94 94]}}</ref> among other random objects.<ref name="Haenggi2013page10and18">{{cite book|author=Martin Haenggi|title=Stochastic Geometry for Wireless Networks|url=https://books.google.com/books?id=CLtDhblwWEgC|year=2013|publisher=Cambridge University Press|isbn=978-1-107-01469-5|pages=10, 18}}</ref><ref name="ChiuStoyan2013page41and108">{{cite book|author1=Sung Nok Chiu|author2=Dietrich Stoyan|author3=Wilfrid S. Kendall|author4=Joseph Mecke|title=Stochastic Geometry and Its Applications|url=https://books.google.com/books?id=825NfM6Nc-EC|year=2013|publisher=John Wiley & Sons|isbn=978-1-118-65825-3|pages=41, 108}}</ref> But then it can be defined on the <math>n</math>-dimensional Euclidean space or other mathematical spaces,<ref name="Kingman1992page11">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=11}}</ref> where it is often interpreted as a random set or a random counting measure, instead of a stochastic process.<ref name="Haenggi2013page10and18"/><ref name="ChiuStoyan2013page41and108"/> In this setting, the Poisson process, also called the Poisson point process, is one of the most important objects in probability theory, both for applications and theoretical reasons.<ref name="Stirzaker2000"/><ref name="Streit2010page1">{{cite book|author=Roy L. Streit|title=Poisson Point Processes: Imaging, Tracking, and Sensing|url=https://books.google.com/books?id=KAWmFYUJ5zsC&pg=PA11|year=2010|publisher=Springer Science & Business Media|isbn=978-1-4419-6923-1|page=1}}</ref> But it has been remarked that the Poisson process does not receive as much attention as it should, partly due to it often being considered just on the real line, and not on other mathematical spaces.<ref name="Streit2010page1"/><ref name="Kingman1992pagev">{{cite book|author=J. F. C. Kingman|title=Poisson Processes|url=https://books.google.com/books?id=VEiM-OtwDHkC|year=1992|publisher=Clarendon Press|isbn=978-0-19-159124-2|page=v}}</ref> |
| + | |
| + | 在实线上定义的泊松过程可以解释为一个随机过程,<ref name=“Applebaum2004page1337”/><ref name=“Rosenblatt1962page94”>{cite book | author=Murray Rosenblatt | title=Random Processes |网址=https://archive.org/details/randomprocess00rose\u 0|url access=注册|年份=1962 | publisher=牛津大学出版社|页=[归档文件https://randomesu/0094/94]}}</ref>等随机变量对象。<ref name=“Haenggi2013page10and18”>{cite book | author=Martin Haenggi | title=无线网络随机几何| url=https://books.google.com/books?id=CLtDhblwWEgC | year=2013 | publisher=Cambridge University Press | isbn=978-1-107-01469-5 | pages=10,18}</ref><ref name=“ChiuStoyan2013page41and108”>{cite book | author1=Sung Nok Chiu | author2=Dietrich Stoyan | author3=Wilfrid S.Kendall | author4=Joseph Mecke | title=随机几何及其应用| url=https://books.google.com/books?id=825NfM6Nc EC | year=2013 | publisher=John Wiley&Sons | isbn=978-1-118-65825-3 | pages=41108}</ref>但是它可以定义在<math>n</math>维欧几里德空间或其他数学空间上,<ref name=“kingmann1992page11”>{cite book | author=J.F.C.Kingman | title=Poisson Processess | url=https://books.google.com/books?id=VEiM OtwDHkC | year=1992 | publisher=Clarendon Press | isbn=978-0-19-159124-2 | page=11}</ref>其中它通常被解释为随机集或随机计数度量,而不是随机过程。<ref name=“Haenggi2013page10and18”/><ref name=“ChiuStoyan2013page41and108”/>在此设置中,是泊松过程,也称为泊松点过程,是概率论中最重要的研究对象之一,无论是应用还是理论原因=https://books.google.com/books?id=KAWmFYUJ5zsC&pg=PA11 | year=2010 | publisher=Springer Science&Business Media | isbn=978-1-4419-6923-1 | page=1}}</ref>但有人指出,Poisson过程并没有得到应有的重视,部分原因是它经常被认为只是在实线上,而不是在其他数学空间中。<ref name=“Streit2010page1”/><refname=“kingmann1992pagev”>{cite book | author=J.F.C.Kingman | title=Poisson进程| url=https://books.google.com/books?id=VEiM OtwDHkC | year=1992 | publisher=Clarendon Press | isbn=978-0-19-159124-2 | page=v}</ref> |
| | | |
| X^{-1}(B)=\{\omega\in \Omega: X(\omega)\in B \}, | | X^{-1}(B)=\{\omega\in \Omega: X(\omega)\in B \}, |