更改

添加423字节 、 2020年10月7日 (三) 16:52
无编辑摘要
第379行: 第379行:  
其中 d 是选定的度量单位。其他联系准则包括:
 
其中 d 是选定的度量单位。其他联系准则包括:
    +
此处后准则无翻译
    +
* The sum of all intra-cluster variance.
   −
* The sum of all intra-cluster variance.
+
补充翻译 所有簇内方差之和。
    
* The increase in variance for the cluster being merged ([[Ward's method|Ward's criterion]]).<ref name="wards method">{{cite journal
 
* The increase in variance for the cluster being merged ([[Ward's method|Ward's criterion]]).<ref name="wards method">{{cite journal
 +
 +
补充翻译 合并中的簇的方差相加
    
  |doi=10.2307/2282967
 
  |doi=10.2307/2282967
第435行: 第439行:  
* The probability that candidate clusters spawn from the same distribution function (V-linkage).
 
* The probability that candidate clusters spawn from the same distribution function (V-linkage).
   −
* The product of in-degree and out-degree on a k-nearest-neighbour graph (graph degree linkage).<ref>{{Cite journal|last=Zhang|first=Wei|last2=Wang|first2=Xiaogang|last3=Zhao|first3=Deli|last4=Tang|first4=Xiaoou|date=2012|editor-last=Fitzgibbon|editor-first=Andrew|editor2-last=Lazebnik|editor2-first=Svetlana|editor3-last=Perona|editor3-first=Pietro|editor4-last=Sato|editor4-first=Yoichi|editor5-last=Schmid|editor5-first=Cordelia|title=Graph Degree Linkage: Agglomerative Clustering on a Directed Graph|journal=Computer Vision – ECCV 2012|series=Lecture Notes in Computer Science|language=en|publisher=Springer Berlin Heidelberg|volume=7572|pages=428–441|doi=10.1007/978-3-642-33718-5_31|isbn=9783642337185|arxiv=1208.5092|bibcode=2012arXiv1208.5092Z}} See also: https://github.com/waynezhanghk/gacluster</ref>
+
补充翻译 候选数据群从同一分布函数(V-连锁)中产生的概率。
 +
 
 +
* The product of in-degree and out-degree on a k-nearest-neighbour graph (graph degree linkage).
 +
 
 +
补充翻译 *k-最近邻图(图度连锁)上的入度与出度的乘积
 +
 
 +
<ref>{{Cite journal|last=Zhang|first=Wei|last2=Wang|first2=Xiaogang|last3=Zhao|first3=Deli|last4=Tang|first4=Xiaoou|date=2012|editor-last=Fitzgibbon|editor-first=Andrew|editor2-last=Lazebnik|editor2-first=Svetlana|editor3-last=Perona|editor3-first=Pietro|editor4-last=Sato|editor4-first=Yoichi|editor5-last=Schmid|editor5-first=Cordelia|title=Graph Degree Linkage: Agglomerative Clustering on a Directed Graph|journal=Computer Vision – ECCV 2012|series=Lecture Notes in Computer Science|language=en|publisher=Springer Berlin Heidelberg|volume=7572|pages=428–441|doi=10.1007/978-3-642-33718-5_31|isbn=9783642337185|arxiv=1208.5092|bibcode=2012arXiv1208.5092Z}} See also: https://github.com/waynezhanghk/gacluster</ref>
 +
 
 +
* The increment of some cluster descriptor (i.e., a quantity defined for measuring the quality of a cluster) after merging two clusters.
 +
 
 +
补充翻译 在合并了两个数据群之后,某个群的定义符号(即为度量一个簇的质量而定义的一个量)的增量。
   −
* The increment of some cluster descriptor (i.e., a quantity defined for measuring the quality of a cluster) after merging two clusters.<ref>Zhang, et al. "Agglomerative clustering via maximum incremental path integral." Pattern Recognition (2013).</ref><ref>Zhao, and Tang. "Cyclizing clusters via zeta function of a graph."Advances in Neural Information Processing Systems. 2008.</ref><ref>Ma, et al. "Segmentation of multivariate mixed data via lossy data coding and compression." IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9) (2007): 1546-1562.</ref>
+
<ref>Zhang, et al. "Agglomerative clustering via maximum incremental path integral." Pattern Recognition (2013).</ref><ref>Zhao, and Tang. "Cyclizing clusters via zeta function of a graph."Advances in Neural Information Processing Systems. 2008.</ref><ref>Ma, et al. "Segmentation of multivariate mixed data via lossy data coding and compression." IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9) (2007): 1546-1562.</ref>
    
== Discussion 讨论==
 
== Discussion 讨论==
526

个编辑