第4行: |
第4行: |
| == 计算机出现之前 == | | == 计算机出现之前 == |
| | | |
− | [[Automaton]]s were quite a novelty. In the days before computers and electronics, some were very sophisticated, using [[pneumatics]], [[mechanics]], and [[hydraulics]]. The first automata were conceived during the third and second centuries BC and these were demonstrated by the theorems of [[Hero of Alexandria]], which included sophisticated mechanical and hydraulic solutions.<ref>Droz, Edmond. (April 1962), From joined doll to talking robot, New Scientist, vol. 14, no. 282. pp. 37–40.</ref> Many of his notable works were included in the book ''Pneumatics'', which was also used for constructing machines until early modern times.<ref>{{Cite book|title=Synthetic Biology Analysed: Tools for Discussion and Evaluation|last=Engelhard|first=Margret|publisher=Springer|year=2016|isbn=9783319251431|location=Cham|pages=75}}</ref> In 1490, Leonardo da Vinci also constructed an [[Leonardo's robot|armored knight]], which is considered the first humanoid robot in Western civilization.<ref>{{Cite book|title=Introduction to Mobile Robot Control|last=Tzafestas|first=Spyros|publisher=Elsevier|year=2014|isbn=9780124170490|location=Waltham, MA|pages=3}}</ref> | + | [[自动装置]]是相当新奇的东西。在计算机和电子设备出现之前,一些自动装置设备非常复杂,涉及气体力学、机械力学和水力学。第一个自动机诞生于公元前三世纪到公元前二世纪之间,由亚历山大港的希罗发明,其中包括复杂的机械和液压解决方案<ref>Droz, Edmond. (April 1962), From joined doll to talking robot, New Scientist, vol. 14, no. 282. pp. 37–40.</ref>。希罗的许多著名作品被收录在《气体力学》一书中,直到近代早期,这本书还被用于建造机器<ref>{{Cite book|title=Synthetic Biology Analysed: Tools for Discussion and Evaluation|last=Engelhard|first=Margret|publisher=Springer|year=2016|isbn=9783319251431|location=Cham|pages=75}}</ref>。1490年,列奥纳多·达·芬奇还建造了一个装甲骑士,这被认为是西方文明中第一个人形机器人。<ref>{{Cite book|title=Introduction to Mobile Robot Control|last=Tzafestas|first=Spyros|publisher=Elsevier|year=2014|isbn=9780124170490|location=Waltham, MA|pages=3}}</ref> |
| | | |
− | Automatons were quite a novelty. In the days before computers and electronics, some were very sophisticated, using pneumatics, mechanics, and hydraulics. The first automata were conceived during the third and second centuries BC and these were demonstrated by the theorems of Hero of Alexandria, which included sophisticated mechanical and hydraulic solutions. Many of his notable works were included in the book Pneumatics, which was also used for constructing machines until early modern times. In 1490, Leonardo da Vinci also constructed an armored knight, which is considered the first humanoid robot in Western civilization.
| + | 其他早期著名的例子包括 al-Jazari 的人形机器人。这位阿拉伯发明家曾经构造了一组自动机,可以命令它们演奏不同的乐曲<ref>{{Cite book|title=Science Year by Year , Dorling Kindersley, 2013: Science Year by Year|last=Winston|first=Robert|publisher=DK|year=2013|isbn=9781409316138|location=London|pages=334}}</ref> 。还有1735年展出的雅克·德·沃康森的人造鸭子,它有数千个活动部件,是最早模仿生物系统的机器之一。据报道,这只鸭子能吃、能消化、能喝水、能嘎嘎叫,还能在游泳池里溅水。<ref>{{cite web| url=http://www.nyu.edu/pages/linguistics/courses/v610051/gelmanr/ling.html| title=Gallery of Automata| accessdate=2006-03-03| first=Rony| last=Gelman}}</ref>它在整个欧洲展出,直至其年久失修。 |
| | | |
− | 自动装置是相当新奇的东西。在计算机和电子设备出现之前,一些自动装置设备非常复杂,涉及气体力学、机械力学和水力学。第一个自动机诞生于公元前三世纪到公元前二世纪之间,由亚历山大港的希罗发明,其中包括复杂的机械和液压解决方案<ref>Droz, Edmond. (April 1962), From joined doll to talking robot, New Scientist, vol. 14, no. 282. pp. 37–40.</ref>。希罗的许多著名作品被收录在《气体力学》一书中,直到近代早期,这本书还被用于建造机器<ref>{{Cite book|title=Synthetic Biology Analysed: Tools for Discussion and Evaluation|last=Engelhard|first=Margret|publisher=Springer|year=2016|isbn=9783319251431|location=Cham|pages=75}}</ref>。1490年,列奥纳多·达·芬奇还建造了一个装甲骑士,这被认为是西方文明中第一个人形机器人。<ref>{{Cite book|title=Introduction to Mobile Robot Control|last=Tzafestas|first=Spyros|publisher=Elsevier|year=2014|isbn=9780124170490|location=Waltham, MA|pages=3}}</ref>
| + | 然而,直到廉价计算力的发明,[[人工生命]]才真正成为一门合法的科学,能够更多地沉浸在理论和计算中,而非仅存在于机械和神话里。 |
| | | |
− | | + | ==1950-1970年代== |
− | | |
− | Other early famous examples include [[al-Jazari]]'s [[humanoid robot]]s. This Arabic inventor once constructed a band of automata, which can be commanded to play different pieces of music.<ref>{{Cite book|title=Science Year by Year , Dorling Kindersley, 2013: Science Year by Year|last=Winston|first=Robert|publisher=DK|year=2013|isbn=9781409316138|location=London|pages=334}}</ref> There is also the case of [[Jacques de Vaucanson]]'s [[digesting Duck|artificial duck]] exhibited in 1735, which had thousands of moving parts and one of the first to mimic a biological system.<ref>{{Cite book|title=Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Examples, and Analysis, 2nd edition|last=Deutsch|first=Andreas|publisher=Birkhäuser|year=2018|isbn=9781489979780|location=New York|pages=67}}</ref> The duck could reportedly eat and digest, drink, quack, and splash in a pool. It was exhibited all over Europe until it fell into disrepair.<ref>{{cite web| url=http://www.nyu.edu/pages/linguistics/courses/v610051/gelmanr/ling.html| title=Gallery of Automata| accessdate=2006-03-03| first=Rony| last=Gelman}}</ref>
| |
− | | |
− | Other early famous examples include al-Jazari's humanoid robots. This Arabic inventor once constructed a band of automata, which can be commanded to play different pieces of music. There is also the case of Jacques de Vaucanson's artificial duck exhibited in 1735, which had thousands of moving parts and one of the first to mimic a biological system. The duck could reportedly eat and digest, drink, quack, and splash in a pool. It was exhibited all over Europe until it fell into disrepair.
| |
− | | |
− | 其他早期著名的例子包括 al-Jazari 的人形机器人。这位阿拉伯发明家曾经构造了一组自动机,可以命令它们演奏不同的乐曲。还有1735年展出的雅克·德·沃康森的人造鸭子,它有数千个活动部件,是最早模仿生物系统的机器之一。据报道,这只鸭子能吃、能消化、能喝水、能嘎嘎叫,还能在游泳池里溅水。它在整个欧洲展出,直至其年久失修。
| |
− | | |
− | | |
− | | |
− | However, it wasn't until the invention of cheap computing power that [[artificial life]] as a legitimate science began in earnest, steeped more in the theoretical and computational than the mechanical and mythological.
| |
− | | |
− | However, it wasn't until the invention of cheap computing power that artificial life as a legitimate science began in earnest, steeped more in the theoretical and computational than the mechanical and mythological.
| |
− | | |
− | 然而,直到廉价计算力的发明,人工生命才真正成为一门合法的科学,能够更多地沉浸在理论和计算中,而非仅存在于机械和神话里。
| |
− | | |
− | ==1950s–1970s==
| |
− | 1950-1970年代
| |
| | | |
| One of the earliest thinkers of the modern age to postulate the potentials of artificial life, separate from [[artificial intelligence]], was math and computer prodigy [[John von Neumann]]. At the [[Hixon Symposium]], hosted by [[Linus Pauling]] in [[Pasadena, California]] in the late 1940s, von Neumann delivered a lecture titled "The General and Logical Theory of Automata." He defined an "automaton" as any machine whose behavior proceeded logically from step to step by combining information from the environment and its own programming, and said that natural organisms would in the end be found to follow similar simple rules. He also spoke about the idea of [[self-replicating machine]]s. He postulated a machine – a [[kinematic automaton]] – made up of a control computer, a construction arm, and a long series of instructions, floating in a lake of parts. By following the instructions that were part of its own body, it could create an identical machine. He followed this idea by creating (with [[Stanislaw Ulam]]) a purely logic-based automaton, not requiring a physical body but based on the changing states of the cells in an infinite grid – the first [[cellular automaton]]. It was extraordinarily complicated compared to later CAs, having hundreds of thousands of cells which could each exist in one of twenty-nine states, but von Neumann felt he needed the complexity in order for it to function not just as a self-replicating "machine", but also as a [[universal computer]] as defined by [[Alan Turing]]. This "[[Von Neumann universal constructor|universal constructor]]" read from a tape of instructions and wrote out a series of cells that could then be made active to leave a fully functional copy of the original machine and its tape. Von Neumann worked on his [[automata theory]] intensively right up to his death, and considered it his most important work. | | One of the earliest thinkers of the modern age to postulate the potentials of artificial life, separate from [[artificial intelligence]], was math and computer prodigy [[John von Neumann]]. At the [[Hixon Symposium]], hosted by [[Linus Pauling]] in [[Pasadena, California]] in the late 1940s, von Neumann delivered a lecture titled "The General and Logical Theory of Automata." He defined an "automaton" as any machine whose behavior proceeded logically from step to step by combining information from the environment and its own programming, and said that natural organisms would in the end be found to follow similar simple rules. He also spoke about the idea of [[self-replicating machine]]s. He postulated a machine – a [[kinematic automaton]] – made up of a control computer, a construction arm, and a long series of instructions, floating in a lake of parts. By following the instructions that were part of its own body, it could create an identical machine. He followed this idea by creating (with [[Stanislaw Ulam]]) a purely logic-based automaton, not requiring a physical body but based on the changing states of the cells in an infinite grid – the first [[cellular automaton]]. It was extraordinarily complicated compared to later CAs, having hundreds of thousands of cells which could each exist in one of twenty-nine states, but von Neumann felt he needed the complexity in order for it to function not just as a self-replicating "machine", but also as a [[universal computer]] as defined by [[Alan Turing]]. This "[[Von Neumann universal constructor|universal constructor]]" read from a tape of instructions and wrote out a series of cells that could then be made active to leave a fully functional copy of the original machine and its tape. Von Neumann worked on his [[automata theory]] intensively right up to his death, and considered it his most important work. |
第33行: |
第16行: |
| One of the earliest thinkers of the modern age to postulate the potentials of artificial life, separate from artificial intelligence, was math and computer prodigy John von Neumann. At the Hixon Symposium, hosted by Linus Pauling in Pasadena, California in the late 1940s, von Neumann delivered a lecture titled "The General and Logical Theory of Automata." He defined an "automaton" as any machine whose behavior proceeded logically from step to step by combining information from the environment and its own programming, and said that natural organisms would in the end be found to follow similar simple rules. He also spoke about the idea of self-replicating machines. He postulated a machine – a kinematic automaton – made up of a control computer, a construction arm, and a long series of instructions, floating in a lake of parts. By following the instructions that were part of its own body, it could create an identical machine. He followed this idea by creating (with Stanislaw Ulam) a purely logic-based automaton, not requiring a physical body but based on the changing states of the cells in an infinite grid – the first cellular automaton. It was extraordinarily complicated compared to later CAs, having hundreds of thousands of cells which could each exist in one of twenty-nine states, but von Neumann felt he needed the complexity in order for it to function not just as a self-replicating "machine", but also as a universal computer as defined by Alan Turing. This "universal constructor" read from a tape of instructions and wrote out a series of cells that could then be made active to leave a fully functional copy of the original machine and its tape. Von Neumann worked on his automata theory intensively right up to his death, and considered it his most important work. | | One of the earliest thinkers of the modern age to postulate the potentials of artificial life, separate from artificial intelligence, was math and computer prodigy John von Neumann. At the Hixon Symposium, hosted by Linus Pauling in Pasadena, California in the late 1940s, von Neumann delivered a lecture titled "The General and Logical Theory of Automata." He defined an "automaton" as any machine whose behavior proceeded logically from step to step by combining information from the environment and its own programming, and said that natural organisms would in the end be found to follow similar simple rules. He also spoke about the idea of self-replicating machines. He postulated a machine – a kinematic automaton – made up of a control computer, a construction arm, and a long series of instructions, floating in a lake of parts. By following the instructions that were part of its own body, it could create an identical machine. He followed this idea by creating (with Stanislaw Ulam) a purely logic-based automaton, not requiring a physical body but based on the changing states of the cells in an infinite grid – the first cellular automaton. It was extraordinarily complicated compared to later CAs, having hundreds of thousands of cells which could each exist in one of twenty-nine states, but von Neumann felt he needed the complexity in order for it to function not just as a self-replicating "machine", but also as a universal computer as defined by Alan Turing. This "universal constructor" read from a tape of instructions and wrote out a series of cells that could then be made active to leave a fully functional copy of the original machine and its tape. Von Neumann worked on his automata theory intensively right up to his death, and considered it his most important work. |
| | | |
− | 现代最早提出人工生命(独立于人工智能)潜力假说的思想家之一,是数学和计算机天才约翰·冯·诺依曼(John von Neumann)。20世纪40年代末,莱纳斯·鲍林(Linus Pauling)在加利福尼亚州帕萨迪纳市举办了希克森研讨会,冯·诺依曼在会上发表了题为“自动机的一般逻辑理论”的演讲。他将“自动机”定义为:通过结合环境信息和自身编程,可逻辑化地逐步执行行为动作的任何机器,并表示,最终人们会发现自然生物也遵循着类似的简单规则。他还谈到了自我复制机器的想法。他设想了一台机器——一台自动运动的机器——由一台控制计算机、一个构造臂和一长串指令组成,漂浮在零部件的湖中。通过执行它自己身体的一部分的指令,它就能制造出一台完全相同的机器。他遵循这个想法,创建了一个纯粹基于逻辑的自动机(与Stanislaw Ulam一起),不需要物理实体,而是基于无限网格中细胞状态的变化——这是第一个细胞自动机(元胞自动机、格状自动机)。与后来的CAs相比,它是非常复杂的,它有成千上万的细胞,每个细胞可以存在于29个状态中的一个,但是冯·诺依曼觉得他需要这种复杂性,以便它不仅能作为一个自我复制的“机器”运行,而且能像艾伦·图灵定义的那样成为一台通用计算机。这个“通用构造函数”读取指令磁带,并写出一系列单元格,这些单元格可以被激活,从而留下原始机器及其磁带的功能齐全的副本。冯 · 诺依曼一直致力于他的自动机理论,直到他去世,并认为这是他最重要的工作。
| + | 现代最早提出人工生命(独立于人工智能)潜力假说的思想家之一,是数学和计算机天才[[约翰·冯·诺依曼]](John von Neumann)。20世纪40年代末,[[莱纳斯·鲍林]](Linus Pauling)在加利福尼亚州帕萨迪纳市举办了希克森研讨会,冯·诺依曼在会上发表了题为“自动机的一般逻辑理论”的演讲。他将“[[自动机]]”定义为:通过结合环境信息和自身编程,可逻辑化地逐步执行行为动作的任何机器,并表示,最终人们会发现自然生物也遵循着类似的简单规则。他还谈到了自我复制机器的想法。他设想了一台机器——一台自动运动的机器——由一台控制计算机、一个构造臂和一长串指令组成,漂浮在零部件的湖中。通过执行它自己身体的一部分的指令,它就能制造出一台完全相同的机器。他遵循这个想法,创建了一个纯粹基于逻辑的自动机(与[[Stanislaw Ulam]]一起),不需要物理实体,而是基于无限网格中细胞状态的变化——这是第一个[[细胞自动机]]([[元胞自动机]]、[[格状自动机]])。与后来的CAs相比,它是非常复杂的,它有成千上万的细胞,每个细胞可以存在于29个状态中的一个,但是冯·诺依曼觉得他需要这种复杂性,以便它不仅能作为一个自我复制的“机器”运行,而且能像[[艾伦·图灵]]定义的那样成为一台通用计算机。这个“通用构造函数”读取指令磁带,并写出一系列单元格,这些单元格可以被激活,从而留下原始机器及其磁带的功能齐全的副本。冯·诺依曼一直致力于他的自动机理论,直到他去世,并认为这是他最重要的工作。 |
− | | |
− | | |
− | | |
− | [[Homer Jacobson]] illustrated basic self-replication in the 1950s with a model train set – a seed "organism" consisting of a "head" and "tail" boxcar could use the simple rules of the system to consistently create new "organisms" identical to itself, so long as there was a random pool of new boxcars to draw from. | |
− | | |
− | Homer Jacobson illustrated basic self-replication in the 1950s with a model train set – a seed "organism" consisting of a "head" and "tail" boxcar could use the simple rules of the system to consistently create new "organisms" identical to itself, so long as there was a random pool of new boxcars to draw from.
| |
| | | |
− | 20世纪50年代,霍默•雅各布森(Homer Jacobson)用一组模型火车说明了基本的自我复制——一个由“头”和“尾”车厢组成的种子“有机体”,只要有一个可供提取的新车厢随机池,就可以使用系统的简单规则,持续创造出与自身相同的新“有机体”。
| + | 20世纪50年代,[[霍默•雅各布森]](Homer Jacobson)用一组模型火车说明了基本的自我复制——一个由“头”和“尾”车厢组成的种子“有机体”,只要有一个可供提取的新车厢随机池,就可以使用系统的简单规则,持续创造出与自身相同的新“有机体”。 |
| | | |
| [[Edward F. Moore]] proposed "Artificial Living Plants", which would be floating factories which could create copies of themselves. They could be programmed to perform some function (extracting fresh water, harvesting minerals from seawater) for an investment that would be relatively small compared to the huge returns from the exponentially growing numbers of factories. [[Freeman Dyson]] also studied the idea, envisioning self-replicating machines sent to explore and exploit other planets and moons, and a NASA group called the Self-Replicating Systems Concept Team performed a 1980 study on the feasibility of a self-building lunar factory. | | [[Edward F. Moore]] proposed "Artificial Living Plants", which would be floating factories which could create copies of themselves. They could be programmed to perform some function (extracting fresh water, harvesting minerals from seawater) for an investment that would be relatively small compared to the huge returns from the exponentially growing numbers of factories. [[Freeman Dyson]] also studied the idea, envisioning self-replicating machines sent to explore and exploit other planets and moons, and a NASA group called the Self-Replicating Systems Concept Team performed a 1980 study on the feasibility of a self-building lunar factory. |