第6行: |
第6行: |
| [[File:Genomics_GTL_Pictorial_Program.jpg|190px|thumb|right|生物学的系统方法说明]] | | [[File:Genomics_GTL_Pictorial_Program.jpg|190px|thumb|right|生物学的系统方法说明]] |
| 系统方法研究生物学的一个例证。 | | 系统方法研究生物学的一个例证。 |
| + | |
| | | |
| '''<font color="#FF8000">系统生物学 Systems biology</font>'''是对复杂生物系统进行演算分析、数学分析和建模的学科。它是一个以生物学为基础的跨学科研究领域,侧重于生物系统内复杂的相互作用,采用整体的方法('''<font color="#FF8000">整体论 holism</font>'''而不是更传统的'''<font color="#FF8000">还原论 reductionism</font>''')进行生物学研究。<ref name="Tavassoly 487–500">{{Cite journal|last=Tavassoly|first=Iman|last2=Goldfarb|first2=Joseph|last3=Iyengar|first3=Ravi|date=2018-10-04|title=Systems biology primer: the basic methods and approaches|journal=Essays in Biochemistry|volume=62|issue=4|pages=487–500|doi=10.1042/EBC20180003|issn=0071-1365|pmid=30287586}}</ref>它跨越了系统论和应用数学方法的领域,发展成为'''<font color="#FF8000">复杂系统生物学 complex systems biology</font>'''的一个分支。 | | '''<font color="#FF8000">系统生物学 Systems biology</font>'''是对复杂生物系统进行演算分析、数学分析和建模的学科。它是一个以生物学为基础的跨学科研究领域,侧重于生物系统内复杂的相互作用,采用整体的方法('''<font color="#FF8000">整体论 holism</font>'''而不是更传统的'''<font color="#FF8000">还原论 reductionism</font>''')进行生物学研究。<ref name="Tavassoly 487–500">{{Cite journal|last=Tavassoly|first=Iman|last2=Goldfarb|first2=Joseph|last3=Iyengar|first3=Ravi|date=2018-10-04|title=Systems biology primer: the basic methods and approaches|journal=Essays in Biochemistry|volume=62|issue=4|pages=487–500|doi=10.1042/EBC20180003|issn=0071-1365|pmid=30287586}}</ref>它跨越了系统论和应用数学方法的领域,发展成为'''<font color="#FF8000">复杂系统生物学 complex systems biology</font>'''的一个分支。 |
− |
| |
| | | |
| | | |
第33行: |
第33行: |
| | | |
| 作为一种社会科学现象,系统生物学由利用多样的跨学科的工具和人员的实验资源,寻求整合有关生物系统相互作用的复杂数据的战略所定义。<ref>{{Cite book |last1=Baitaluk|first1=M. |chapter=System Biology of Gene Regulation |doi=10.1007/978-1-59745-524-4_4 |title=Biomedical Informatics |journal=<!--Bypass Citation bot --> |series=Methods in Molecular Biology |volume=569 |pages=55–87 |year=2009 |isbn=978-1-934115-63-3 |pmid=19623486 |pmc= }}</ref> | | 作为一种社会科学现象,系统生物学由利用多样的跨学科的工具和人员的实验资源,寻求整合有关生物系统相互作用的复杂数据的战略所定义。<ref>{{Cite book |last1=Baitaluk|first1=M. |chapter=System Biology of Gene Regulation |doi=10.1007/978-1-59745-524-4_4 |title=Biomedical Informatics |journal=<!--Bypass Citation bot --> |series=Methods in Molecular Biology |volume=569 |pages=55–87 |year=2009 |isbn=978-1-934115-63-3 |pmid=19623486 |pmc= }}</ref> |
| + | |
| | | |
| 各种各样的观点说明了这样一个事实,即系统生物学指的是一系列周边重叠概念的集合,而不是一个独立的领域。然而,随着系统生物学的教职和研究机构在全球范围内的激增,这个术语在2007年已经广泛流行和普及。 | | 各种各样的观点说明了这样一个事实,即系统生物学指的是一系列周边重叠概念的集合,而不是一个独立的领域。然而,随着系统生物学的教职和研究机构在全球范围内的激增,这个术语在2007年已经广泛流行和普及。 |
第76行: |
第77行: |
| | | |
| 除了识别和定量化上述给定的分子之外,有进一步的技术来分析细胞内的动力学和相互作用。研究的相互作用包括生物、组织、细胞和细胞内分子的相互作用(相互作用组学)。<ref>{{Cite journal|last=Cusick|first=Michael E.|last2=Klitgord|first2=Niels|last3=Vidal|first3=Marc|last4=Hill|first4=David E.|date=2005-10-15|title=Interactome: gateway into systems biology|journal=Human Molecular Genetics|language=en|volume=14|issue=suppl_2|pages=R171–R181|doi=10.1093/hmg/ddi335|pmid=16162640|issn=0964-6906|doi-access=free}}</ref>目前,在这一领域的权威分子学科,尽管这一效用的定义并不仅仅局限于该领域,也有其它分子学科的作用。这些分子学科包括: 神经电动力学,这是一个有机体网络,其中大脑的计算功能作为一个动态系统,包括潜在的生物物理机制和新兴的电力相互作用的计算<ref>{{Cite journal|last=Aur|first=Dorian|date=2012|title=From Neuroelectrodynamics to Thinking Machines|journal=Cognitive Computation|language=en|volume=4|issue=1|pages=4–12|doi=10.1007/s12559-011-9106-3|issn=1866-9956}}</ref>;流体学,测量一个系统里分子随着时间的动态变化,如细胞、组织或有机体;<ref>{{Cite journal|last=Diez|first=Mikel|last2=Petuya|first2=Víctor|last3=Martínez-Cruz|first3=Luis Alfonso|last4=Hernández|first4=Alfonso|date=2011-12-01|title=A biokinematic approach for the co--mputational simulation of proteins molecular mechanism|journal=Mechanism and Machine Theory|volume=46|issue=12|pages=1854–1868|doi=10.1016/j.mechmachtheory.2011.07.013|issn=0094-114X}}</ref>在处理系统生物学问题时,有两种主要的方法。它们分别是自上而下和自下而上的方法。自上而下的方法尽可能多把系统考虑在内,并且在很大程度上依赖于实验结果。RNA-seq 技术是自上而下实验方法的一个例子。相反,自下而上的方法用于创建详细的模型,同时也结合了实验数据。自下而上方法的一个例子是使用电路模型来描述一个简单的基因网络。<ref>{{Cite journal|title=Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism|last=Loor|first=Khuram Shahzad and Juan J.|date=2012-07-31|journal=Current Genomics|volume=13|issue=5|pages=379–394|language=en|doi=10.2174/138920212801619269|pmc=3401895|pmid=23372424}}</ref> | | 除了识别和定量化上述给定的分子之外,有进一步的技术来分析细胞内的动力学和相互作用。研究的相互作用包括生物、组织、细胞和细胞内分子的相互作用(相互作用组学)。<ref>{{Cite journal|last=Cusick|first=Michael E.|last2=Klitgord|first2=Niels|last3=Vidal|first3=Marc|last4=Hill|first4=David E.|date=2005-10-15|title=Interactome: gateway into systems biology|journal=Human Molecular Genetics|language=en|volume=14|issue=suppl_2|pages=R171–R181|doi=10.1093/hmg/ddi335|pmid=16162640|issn=0964-6906|doi-access=free}}</ref>目前,在这一领域的权威分子学科,尽管这一效用的定义并不仅仅局限于该领域,也有其它分子学科的作用。这些分子学科包括: 神经电动力学,这是一个有机体网络,其中大脑的计算功能作为一个动态系统,包括潜在的生物物理机制和新兴的电力相互作用的计算<ref>{{Cite journal|last=Aur|first=Dorian|date=2012|title=From Neuroelectrodynamics to Thinking Machines|journal=Cognitive Computation|language=en|volume=4|issue=1|pages=4–12|doi=10.1007/s12559-011-9106-3|issn=1866-9956}}</ref>;流体学,测量一个系统里分子随着时间的动态变化,如细胞、组织或有机体;<ref>{{Cite journal|last=Diez|first=Mikel|last2=Petuya|first2=Víctor|last3=Martínez-Cruz|first3=Luis Alfonso|last4=Hernández|first4=Alfonso|date=2011-12-01|title=A biokinematic approach for the co--mputational simulation of proteins molecular mechanism|journal=Mechanism and Machine Theory|volume=46|issue=12|pages=1854–1868|doi=10.1016/j.mechmachtheory.2011.07.013|issn=0094-114X}}</ref>在处理系统生物学问题时,有两种主要的方法。它们分别是自上而下和自下而上的方法。自上而下的方法尽可能多把系统考虑在内,并且在很大程度上依赖于实验结果。RNA-seq 技术是自上而下实验方法的一个例子。相反,自下而上的方法用于创建详细的模型,同时也结合了实验数据。自下而上方法的一个例子是使用电路模型来描述一个简单的基因网络。<ref>{{Cite journal|title=Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism|last=Loor|first=Khuram Shahzad and Juan J.|date=2012-07-31|journal=Current Genomics|volume=13|issue=5|pages=379–394|language=en|doi=10.2174/138920212801619269|pmc=3401895|pmid=23372424}}</ref> |
− |
| |
| | | |
| | | |
第86行: |
第86行: |
| | | |
| 这些研究经常与大规模的微扰方法结合,包括基于基因的(RNA干扰,野生型和突变型基因的错误表达)和使用小分子库的化学方法。机器人和自动化传感器使这种大规模的实验和数据采集成为可能。这些技术仍在出现,并且很多面临产生的数据量越大,质量就越低的问题。各种各样的定量科学家(计算生物学家、统计学家、数学家、计算机科学家和物理学家)正在努力提高这些方法的质量,并创建、完善和重新测试模型,以准确地反映观测结果。 | | 这些研究经常与大规模的微扰方法结合,包括基于基因的(RNA干扰,野生型和突变型基因的错误表达)和使用小分子库的化学方法。机器人和自动化传感器使这种大规模的实验和数据采集成为可能。这些技术仍在出现,并且很多面临产生的数据量越大,质量就越低的问题。各种各样的定量科学家(计算生物学家、统计学家、数学家、计算机科学家和物理学家)正在努力提高这些方法的质量,并创建、完善和重新测试模型,以准确地反映观测结果。 |
− |
| |
| | | |
| | | |
第163行: |
第162行: |
| | | |
| === 集智文章推荐 === | | === 集智文章推荐 === |
− |
| |
| [[File:QQ图片20201010205649.png|190px|thumb|right|生命的涌现]] | | [[File:QQ图片20201010205649.png|190px|thumb|right|生命的涌现]] |
| ====[https://swarma.org/?p=20086 生命是怎样涌现的:系统生物学入门全路径]==== | | ====[https://swarma.org/?p=20086 生命是怎样涌现的:系统生物学入门全路径]==== |
| :系统生物学及相关跨学科领域正在兴起,近年来基于各类疾病的组学研究成果频出。作者整理了这份结合多门教材、多篇经典论文的学习路径,供你入门参考。 | | :系统生物学及相关跨学科领域正在兴起,近年来基于各类疾病的组学研究成果频出。作者整理了这份结合多门教材、多篇经典论文的学习路径,供你入门参考。 |
| + | |
| | | |
| ====[https://swarma.org/?p=1441 意识如何自下而上地涌现?来自系统生物学的启示 | 长文综述]==== | | ====[https://swarma.org/?p=1441 意识如何自下而上地涌现?来自系统生物学的启示 | 长文综述]==== |
第174行: |
第173行: |
| ====[https://campus.swarma.org/course/566 系统科学导引(一):概论部分]==== | | ====[https://campus.swarma.org/course/566 系统科学导引(一):概论部分]==== |
| :本课程以实际研究工作的例子来阐述什么是系统科学,内容丰富,可以帮助学习者把数学物理学的概念思想分析方法用于具有系统科学特点的实际问题。 | | :本课程以实际研究工作的例子来阐述什么是系统科学,内容丰富,可以帮助学习者把数学物理学的概念思想分析方法用于具有系统科学特点的实际问题。 |
| + | |
| | | |
| ====[https://campus.swarma.org/course/1348 Scaling in Biology and Society]==== | | ====[https://campus.swarma.org/course/1348 Scaling in Biology and Society]==== |