更改

添加55字节 、 2020年10月27日 (二) 15:55
无编辑摘要
第11行: 第11行:  
Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Shannon to extend the idea of (Shannon) entropy, a measure of average surprisal of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not.
 
Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Shannon to extend the idea of (Shannon) entropy, a measure of average surprisal of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not.
   −
微分熵(也称为连续熵)是信息论中的一个概念,最初由香农尝试将(香农)熵的概念扩展到连续的概率分布,香农熵是衡量一个随机变量的平均惊人程度的指标。不幸的是,香农没有推导出这个公式,而只是假设它是离散熵的正确连续模拟,但事实上它不是。
+
<font color="#ff8000"> 微分熵Differential entropy</font>(也称为连续熵)是信息论中的一个概念,最初由香农尝试将(香农)熵的概念扩展到连续的概率分布,香农熵是衡量一个随机变量的平均惊人程度的指标。不幸的是,香农没有推导出这个公式,而只是假设它是离散熵的正确连续模拟,但事实上它不是。
      第383行: 第383行:  
The differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math> and estimator <math>\widehat{X}</math> the following holds:
 
The differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math> and estimator <math>\widehat{X}</math> the following holds:
   −
对于估计量的预期平方误差,微分熵产生一个下限。对于任何随机变量x和估计量 下面的值:
+
对于估计量的预期平方误差,微分熵产生一个下限。对于任何随机变量x和估计量Xˆ 下面的值:
      第392行: 第392行:     
===Alternative proof===
 
===Alternative proof===
 
+
替代证明
 
with equality if and only if <math>X</math> is a Gaussian random variable and <math>\widehat{X}</math> is the mean of <math>X</math>.
 
with equality if and only if <math>X</math> is a Gaussian random variable and <math>\widehat{X}</math> is the mean of <math>X</math>.
   −
当且仅当 x是一个 Gaussian 随机变量,而 < math > x } </math > 是 < math > x </math > 的平均值。
+
当且仅当x是一个 Gaussian 随机变量,而x 是Xˆ 的平均值。
    
This result may also be demonstrated using the [[variational calculus]]. A Lagrangian function with two [[Lagrangian multiplier]]s may be defined as:
 
This result may also be demonstrated using the [[variational calculus]]. A Lagrangian function with two [[Lagrangian multiplier]]s may be defined as:
第486行: 第486行:     
==Example: Exponential distribution==
 
==Example: Exponential distribution==
 
+
例子:指数分布
 
| Laplace || <math>f(x) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)</math> || <math>1 + \ln(2b) \, </math>||<math>(-\infty,\infty)\,</math>
 
| Laplace || <math>f(x) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)</math> || <math>1 + \ln(2b) \, </math>||<math>(-\infty,\infty)\,</math>
   第624行: 第624行:     
==Relation to estimator error==
 
==Relation to estimator error==
 
+
与估计量误差的联系
 
|-
 
|-
   第657行: 第657行:  
The first term on the right approximates the differential entropy, while the second term is approximately <math>-\log(h)</math>. Note that this procedure suggests that the entropy in the discrete sense of a continuous random variable should be <math>\infty</math>.
 
The first term on the right approximates the differential entropy, while the second term is approximately <math>-\log(h)</math>. Note that this procedure suggests that the entropy in the discrete sense of a continuous random variable should be <math>\infty</math>.
   −
右边的第一个术语近似于微分熵,而第二个术语近似于 math >-log (h) </math > 。请注意,这个过程表明,连续随机变量的离散意义上的熵应该是“数学”。
+
右边的第一个术语近似于微分熵,而第二个术语近似于log(h)。请注意,这个过程表明,连续随机变量的离散意义上的熵应该是“无穷”。
    
|+ Table of differential entropies
 
|+ Table of differential entropies
153

个编辑