第162行: |
第162行: |
| 与上面概述的一般的消息传递不同,用户可能对数据集当中的特定数据点感兴趣。下表介绍了这种低层次的用户分析活动。分类可以由活动的三个极来组织: '''检索值retrieving values'''、'''查找数据点finding data points'''和'''排列数据点arranging data points'''。<ref>Robert Amar, James Eagan, and John Stasko (2005) [http://www.cc.gatech.edu/~stasko/papers/infovis05.pdf "Low-Level Components of Analytic Activity in Information Visualization"]</ref><ref>William Newman (1994) [http://www.mdnpress.com/wmn/pdfs/chi94-pro-formas-2.pdf "A Preliminary Analysis of the Products of HCI Research, Using Pro Forma Abstracts"]</ref><ref>Mary Shaw (2002) [https://www.cs.cmu.edu/~Compose/ftp/shaw-fin-etaps.pdf "What Makes Good Research in Software Engineering?"]</ref><ref name="ConTaaS">{{cite web|title=ConTaaS: An Approach to Internet-Scale Contextualisation for Developing Efficient Internet of Things Applications|url=https://scholarspace.manoa.hawaii.edu/handle/10125/41879|website=ScholarSpace|publisher=HICSS50|accessdate=May 24, 2017}}</ref> | | 与上面概述的一般的消息传递不同,用户可能对数据集当中的特定数据点感兴趣。下表介绍了这种低层次的用户分析活动。分类可以由活动的三个极来组织: '''检索值retrieving values'''、'''查找数据点finding data points'''和'''排列数据点arranging data points'''。<ref>Robert Amar, James Eagan, and John Stasko (2005) [http://www.cc.gatech.edu/~stasko/papers/infovis05.pdf "Low-Level Components of Analytic Activity in Information Visualization"]</ref><ref>William Newman (1994) [http://www.mdnpress.com/wmn/pdfs/chi94-pro-formas-2.pdf "A Preliminary Analysis of the Products of HCI Research, Using Pro Forma Abstracts"]</ref><ref>Mary Shaw (2002) [https://www.cs.cmu.edu/~Compose/ftp/shaw-fin-etaps.pdf "What Makes Good Research in Software Engineering?"]</ref><ref name="ConTaaS">{{cite web|title=ConTaaS: An Approach to Internet-Scale Contextualisation for Developing Efficient Internet of Things Applications|url=https://scholarspace.manoa.hawaii.edu/handle/10125/41879|website=ScholarSpace|publisher=HICSS50|accessdate=May 24, 2017}}</ref> |
| | | |
− |
| |
− |
| |
− |
| |
− | {| class="wikitable" border="1"
| |
| | | |
| {| class="wikitable" border="1" | | {| class="wikitable" border="1" |
− |
| |
− | { | 类“ wikitable”边框“1”
| |
− |
| |
− | ! align="center" | # !! width="160" | Task !! General<br />Description !! Pro Forma<br />Abstract !! width="35%" | Examples
| |
− |
| |
| ! align="center" | # !! width="160" | Task !! General<br />Description !! Pro Forma<br />Abstract !! width="35%" | Examples | | ! align="center" | # !! width="160" | Task !! General<br />Description !! Pro Forma<br />Abstract !! width="35%" | Examples |
− |
| |
− | !align="center" | # !! width="160" | Task !! General<br />Description !! Pro Forma<br />Abstract !! width="35%" | Examples
| |
− |
| |
− | |-
| |
− |
| |
| |- | | |- |
− |
| |
− | |-
| |
− |
| |
| | align="center" | 1 | | | align="center" | 1 |
− |
| |
− | | align="center" | 1
| |
− |
| |
− | | align="center" | 1
| |
− |
| |
| | '''Retrieve Value''' | | | '''Retrieve Value''' |
− |
| |
− | | Retrieve Value
| |
− |
| |
− | | '''<font color='#ff8000'>检索值Retrieve Value</font>'''
| |
− |
| |
− | | Given a set of specific cases, find attributes of those cases.
| |
− |
| |
− | | Given a set of specific cases, find attributes of those cases.
| |
− |
| |
| | 给定特定的一组案例,找出这些案例的属性。 | | | 给定特定的一组案例,找出这些案例的属性。 |
− |
| |
− | | What are the values of attributes {X, Y, Z, ...} in the data cases {A, B, C, ...}?
| |
− |
| |
− | | What are the values of attributes {X, Y, Z, ...} in the data cases {A, B, C, ...}?
| |
− |
| |
| | 数据案例{A, B, C, ... }中属性{ X, Y, Z, ... }的值是什么? | | | 数据案例{A, B, C, ... }中属性{ X, Y, Z, ... }的值是什么? |
− | | + | | “-每加仑汽油在福特Mondeo车上的行驶里程是多少?” |
− | | ''- What is the mileage per gallon of the Ford Mondeo?'' | |
− | | |
− | | - What is the mileage per gallon of the Ford Mondeo?
| |
− | | |
− | | “-每加仑汽油在福特Mondeo车上的行驶里程是多少?”
| |
− | | |
− | ''- How long is the movie Gone with the Wind?''
| |
− | | |
− | - How long is the movie Gone with the Wind?
| |
− | | |
| “-电影《乱世佳人》有多长?” | | “-电影《乱世佳人》有多长?” |
| + | |- |
| + | | align="center" | 2 |
| + | | ''' 过滤Filter''' |
| + | | 给定属性值的一些具体条件,找出满足这些条件的数据案例。 |
| + | |哪些数据案例满足条件{A, B, C... } ? |
| + | | “什么家乐氏麦片含有高纤维?(注:Kellogg‘s (家乐氏) 公司为全球知名谷物早餐和零食制造商。)” |
| + | “哪些喜剧获了奖?” |
| + | “-哪些基金的表现不如 SP-500?” |
| + | |- |
| + | | align="center" | 3 |
| + | | '''计算派生值Compute Derived Value''' |
| + | | 给定一组数据案例,计算这些数据案例以聚合形式表示的数值。 |
| + | | '''<font color='#ff8000'>聚合函数aggregation function </font>'''F 在给定数据集 S 上的值是多少? |
| + | | “-'''<font color='#ff8000'>波斯特谷物Post cereals</font>'''的平均热量是多少?” |
| + | “-所有商店的总收入是多少?” |
| | | |
| + | “-有多少汽车制造商?” |
| |- | | |- |
| + | | align="center" | 4 |
| + | | '''Find Extremum''' |
| + | | Find data cases possessing an extreme value of an attribute over its range within the data set. |
| + | | What are the top/bottom N data cases with respect to attribute A? |
| + | | ''- What is the car with the highest MPG?'' |
| + | ''- What director/film has won the most awards?'' |
| | | |
| + | ''- What Marvel Studios film has the most recent release date?'' |
| + | |- |
| + | | align="center" | 5 |
| + | | '''Sort''' |
| + | | Given a set of data cases, rank them according to some ordinal metric. |
| + | | What is the sorted order of a set S of data cases according to their value of attribute A? |
| + | | ''- Order the cars by weight.'' |
| + | ''- Rank the cereals by calories.'' |
| |- | | |- |
| + | | align="center" | 6 |
| + | | '''Determine Range''' |
| + | | Given a set of data cases and an attribute of interest, find the span of values within the set. |
| + | | What is the range of values of attribute A in a set S of data cases? |
| + | | ''- What is the range of film lengths?'' |
| + | ''- What is the range of car horsepowers?'' |
| | | |
| + | ''- What actresses are in the data set?'' |
| + | |- |
| + | | align="center" | 7 |
| + | | '''Characterize Distribution''' |
| + | | Given a set of data cases and a quantitative attribute of interest, characterize the distribution of that attribute's values over the set. |
| + | | What is the distribution of values of attribute A in a set S of data cases? |
| + | | ''- What is the distribution of carbohydrates in cereals?'' |
| + | ''- What is the age distribution of shoppers?'' |
| |- | | |- |
| + | | align="center" | 8 |
| + | | '''Find Anomalies''' |
| + | | Identify any anomalies within a given set of data cases with respect to a given relationship or expectation, e.g. statistical outliers. |
| + | | Which data cases in a set S of data cases have unexpected/exceptional values? |
| + | | ''- Are there exceptions to the relationship between horsepower and acceleration?'' |
| + | ''- Are there any outliers in protein?'' |
| + | |- |
| + | | align="center" | 9 |
| + | | '''Cluster''' |
| + | | Given a set of data cases, find clusters of similar attribute values. |
| + | | Which data cases in a set S of data cases are similar in value for attributes {X, Y, Z, ...}? |
| + | | ''- Are there groups of cereals w/ similar fat/calories/sugar?'' |
| + | ''- Is there a cluster of typical film lengths?'' |
| + | |- |
| + | | align="center" | 10 |
| + | | '''Correlate''' |
| + | | Given a set of data cases and two attributes, determine useful relationships between the values of those attributes. |
| + | | What is the correlation between attributes X and Y over a given set S of data cases? |
| + | | ''- Is there a correlation between carbohydrates and fat?'' |
| + | ''- Is there a correlation between country of origin and MPG?'' |
| | | |
− | | align="center" | 2
| + | ''- Do different genders have a preferred payment method?'' |
| | | |
− | | align="center" | 2 | + | ''- Is there a trend of increasing film length over the years?'' |
− | | + | |- |
− | | align="center" | 2 | + | | align="center" | 11 |
− | | + | | ''' [[Contextualization (computer science)|Contextualization]]<ref name="ConTaaS"/>''' |
− | | ''' Filter''' | + | | Given a set of data cases, find contextual relevancy of the data to the users. |
− | | + | | Which data cases in a set S of data cases are relevant to the current users' context? |
− | | Filter
| + | | ''- Are there groups of restaurants that have foods based on my current caloric intake?'' |
− | | + | |- |
− | | '''<font color='#ff8000'>过滤Filter </font>''' | + | |} |
− | | |
− | | Given some concrete conditions on attribute values, find data cases satisfying those conditions. | |
− | | |
− | | Given some concrete conditions on attribute values, find data cases satisfying those conditions.
| |
− | | |
− | | 给定属性值的一些具体条件,找出满足这些条件的数据案例。
| |
− | | |
− | | Which data cases satisfy conditions {A, B, C...}? | |
− | | |
− | | Which data cases satisfy conditions {A, B, C...}?
| |
− | | |
− | | 哪些数据案例满足条件{A, B, C... } ?
| |
− | | |
− | | ''- What Kellogg's cereals have high fiber?'' | |
| | | |
− | | - What Kellogg's cereals have high fiber?
| |
| | | |
− | |-“什么家乐氏麦片含有高纤维?(注:Kellogg‘s (家乐氏) 公司为全球知名谷物早餐和零食制造商。)”
| |
| | | |
− | ''- What comedies have won awards?''
| |
| | | |
− | - What comedies have won awards?
| |
| | | |
− | - “哪些喜剧获了奖?”
| |
| | | |
| | | |