更改

删除105字节 、 2020年11月3日 (二) 15:42
无编辑摘要
第1行: 第1行:  
'''Complex systems biology''' ('''CSB''') is a branch or subfield of [[mathematical and theoretical biology]] concerned with [[complexity]] of both structure and function in biological organisms, as well as the emergence and evolution of organisms and species, with emphasis  being placed on the [[interconnectivity|complex interactions]] of, and within, [[Biological network inference|bionetworks]],<ref>{{cite book |author1=Sprites, P |author2=Glymour, C |author3=Scheines, R |year=2000 |title= Causation, Prediction, and Search: Adaptive Computation and Machine Learning |edition=2nd |publisher=[[MIT Press]] |isbn=}}</ref> and on the fundamental relations and [[Relational algebra|relational patterns]] that are essential to life.<ref>Donald Snooks, Graeme, "A general theory of complex living systems: Exploring the demand side of dynamics", ''Complexity'', vol. 13, no. 6, July/August 2008.</ref><ref name="Bonner">Bonner, J. T. 1988. The Evolution of Complexity by Means of Natural Selection. Princeton: Princeton University Press.</ref><ref name="ReferenceA">{{cite journal | last1 = Rosen | first1 = R. | year = 1958a | title = A Relational Theory of Biological Systems | url = | journal = Bulletin of Mathematical Biophysics | volume = 20 | issue = 3| pages = 245–260 | doi=10.1007/bf02478302}}</ref><ref>{{cite journal | last1 = Baianu | first1 = I. C. | year = 2006 | title = Robert Rosen's Work and Complex Systems Biology | url = | journal = Axiomathes | volume = 16 | issue = 1–2| pages = 25–34 | doi=10.1007/s10516-005-4204-z| s2cid = 4673166 }}</ref><ref name="Rosen">{{cite journal | last1 = Rosen | first1 = R. | year = 1958b | title = The Representation of Biological Systems from the Standpoint of the Theory of Categories | url = | journal = Bulletin of Mathematical Biophysics | volume = 20 | issue = 4| pages = 317–341 | doi=10.1007/bf02477890}}</ref> CSB is thus a field of theoretical sciences aimed at discovering and [[Relational model|modeling the relational patterns]] essential to life that has only a partial overlap with [[complex systems theory]],<ref name="springerlink">{{cite journal | last1 = Baianu | first1 = I. C. | last2 = Brown | first2 = R. | last3 = Glazebrook | first3 = J. F. | year = 2007 | title = Categorical Ontology of Complex Spacetime Structures: The Emergence of Life and Human Consciousness | url = | journal = Axiomathes | volume = 17 | issue = 3–4| pages = 223–352 | doi = 10.1007/s10516-007-9011-2 | citeseerx = 10.1.1.145.9486 | s2cid = 123179302 }}</ref> and also with the systems approach to biology called [[systems biology]]; this is because the latter is restricted primarily to simplified models of biological organization and organisms, as well as to only a general consideration of philosophical or semantic questions related to complexity in biology.{{citation needed|date=June 2012}}  Moreover, a wide range of abstract theoretical [[complex systems]] are studied as a field of [[applied mathematics]], with or without relevance to biology, chemistry or physics.
 
'''Complex systems biology''' ('''CSB''') is a branch or subfield of [[mathematical and theoretical biology]] concerned with [[complexity]] of both structure and function in biological organisms, as well as the emergence and evolution of organisms and species, with emphasis  being placed on the [[interconnectivity|complex interactions]] of, and within, [[Biological network inference|bionetworks]],<ref>{{cite book |author1=Sprites, P |author2=Glymour, C |author3=Scheines, R |year=2000 |title= Causation, Prediction, and Search: Adaptive Computation and Machine Learning |edition=2nd |publisher=[[MIT Press]] |isbn=}}</ref> and on the fundamental relations and [[Relational algebra|relational patterns]] that are essential to life.<ref>Donald Snooks, Graeme, "A general theory of complex living systems: Exploring the demand side of dynamics", ''Complexity'', vol. 13, no. 6, July/August 2008.</ref><ref name="Bonner">Bonner, J. T. 1988. The Evolution of Complexity by Means of Natural Selection. Princeton: Princeton University Press.</ref><ref name="ReferenceA">{{cite journal | last1 = Rosen | first1 = R. | year = 1958a | title = A Relational Theory of Biological Systems | url = | journal = Bulletin of Mathematical Biophysics | volume = 20 | issue = 3| pages = 245–260 | doi=10.1007/bf02478302}}</ref><ref>{{cite journal | last1 = Baianu | first1 = I. C. | year = 2006 | title = Robert Rosen's Work and Complex Systems Biology | url = | journal = Axiomathes | volume = 16 | issue = 1–2| pages = 25–34 | doi=10.1007/s10516-005-4204-z| s2cid = 4673166 }}</ref><ref name="Rosen">{{cite journal | last1 = Rosen | first1 = R. | year = 1958b | title = The Representation of Biological Systems from the Standpoint of the Theory of Categories | url = | journal = Bulletin of Mathematical Biophysics | volume = 20 | issue = 4| pages = 317–341 | doi=10.1007/bf02477890}}</ref> CSB is thus a field of theoretical sciences aimed at discovering and [[Relational model|modeling the relational patterns]] essential to life that has only a partial overlap with [[complex systems theory]],<ref name="springerlink">{{cite journal | last1 = Baianu | first1 = I. C. | last2 = Brown | first2 = R. | last3 = Glazebrook | first3 = J. F. | year = 2007 | title = Categorical Ontology of Complex Spacetime Structures: The Emergence of Life and Human Consciousness | url = | journal = Axiomathes | volume = 17 | issue = 3–4| pages = 223–352 | doi = 10.1007/s10516-007-9011-2 | citeseerx = 10.1.1.145.9486 | s2cid = 123179302 }}</ref> and also with the systems approach to biology called [[systems biology]]; this is because the latter is restricted primarily to simplified models of biological organization and organisms, as well as to only a general consideration of philosophical or semantic questions related to complexity in biology.{{citation needed|date=June 2012}}  Moreover, a wide range of abstract theoretical [[complex systems]] are studied as a field of [[applied mathematics]], with or without relevance to biology, chemistry or physics.
[[File:Complex-adaptive-system.jpg|right|thumb|276px|Network Representation of a Complex Adaptive System]]
+
 
 
<font color="#ff8000"> 复杂系统生物学 Complex system biology (CSB)</font>是数学和理论生物学的一个分支或子领域,研究生物有机体结构和功能的复杂性,以及生物和物种的出现与进化,重点研究生物网络及其内部的复杂相互作用,以及生命所必须的基本关系与关系模式。因此,CBS是一个旨在发现和建模生命所必需的关系模式理论科学领域,它只与复杂系统理论和被称为系统生物学的生物学的系统方法有部分重叠;这是因为后者主要局限于生物组织和有机体的简化模型,以及对与生物学复杂性相关的哲学或语义问题的一般性考虑。此外,人们把广泛的抽象理论复杂系统作为应用数学的一个领域进行研究,无论其是否与生物学、化学或物理相关。
 
<font color="#ff8000"> 复杂系统生物学 Complex system biology (CSB)</font>是数学和理论生物学的一个分支或子领域,研究生物有机体结构和功能的复杂性,以及生物和物种的出现与进化,重点研究生物网络及其内部的复杂相互作用,以及生命所必须的基本关系与关系模式。因此,CBS是一个旨在发现和建模生命所必需的关系模式理论科学领域,它只与复杂系统理论和被称为系统生物学的生物学的系统方法有部分重叠;这是因为后者主要局限于生物组织和有机体的简化模型,以及对与生物学复杂性相关的哲学或语义问题的一般性考虑。此外,人们把广泛的抽象理论复杂系统作为应用数学的一个领域进行研究,无论其是否与生物学、化学或物理相关。
   第9行: 第9行:     
研究人员一直困扰于如何完整定义单个生物体、物种、生态系统、生物进化和生物圈的复杂性,而且这仍然是一个悬而未决的问题。
 
研究人员一直困扰于如何完整定义单个生物体、物种、生态系统、生物进化和生物圈的复杂性,而且这仍然是一个悬而未决的问题。
A complete definition of [[complexity]] for individual organisms, species, ecosystems, biological evolution and the biosphere has eluded researchers, and still is an ongoing issue.<ref name="Bonner" /><ref>Heylighen, Francis (2008). "Complexity and Self-Organization". In Bates, Marcia J.; Maack, Mary Niles. Encyclopedia of Library and Information Sciences. CRC.</ref>[[File:Seawifs global biosphere.jpg|thumb|right]]
+
A complete definition of [[complexity]] for individual organisms, species, ecosystems, biological evolution and the biosphere has eluded researchers, and still is an ongoing issue.<ref name="Bonner" /><ref>Heylighen, Francis (2008). "Complexity and Self-Organization". In Bates, Marcia J.; Maack, Mary Niles. Encyclopedia of Library and Information Sciences. CRC.</ref>
 +
[[File:Seawifs_global_biosphere.jpg|thumb|right]]
    
大多数复杂系统模型通常是根据统计物理学、信息论和非线性动力学的概念来制定的;这些方法并不关注或者说不包括与组织、拓扑属性或代数拓扑有关的复杂性的概念部分,如基因组、交互体和生物有机体的网络连通性这些重要概念。近年来,人们把以信息论、网络拓扑/抽象图论概念为基础的两种互补方法在神经科学和人类认知等领域结合起来。人们普遍认为,组织的复杂程度存在一种应与本体论的现实层次相区别层次结构,现代等级分类的分类方法也承认生物圈的例如:生物领域和生物圈、生物的界、门、纲、目、科、属和种等复杂层次结构。由于生物体具有动态性和组成的可变性、内在的“模糊性”、自生属性、自我繁殖的能力等等,生物体不符合一般系统的“标准”的定义,因此它们在功能和结构上都是“超级复杂”的;因此,在CSB中,生物体只能被定义为一种简单动态系统,“元系统”。这样一个有机体、物种、“生态系统”等等的元系统定义,并不等同于自生系统理论中对系统中的系统的定义。它也不同于K·D·帕尔默在元系统工程中提出的定义,即生物体不同于具有固定输入输出转换函数的机器和自动机,或不同于具有固定相空间的连续动力系统,这与笛卡尔哲学思想相反;因此,尽管“非确定性自动机”和“模糊自动机”也被定义了,但生物体不能仅仅用五组a(状态、启动状态、输入和输出集/字母、转换函数)来定义。然而,棋盘自动机 tessellation automata或元胞自动机 cellular automata 提供了一种直观的、可视化的/计算的视角来洞察较低层次的复杂性,因此已经成为一种越来越流行的离散模型,研究领域包括可计算理论、应用数学、物理、计算机科学、理论生物学/系统生物学、癌症模拟和微观结构建模。利用遗传算法实现元胞自动机是一个桥接棋盘自动机和CSB中的高层次复杂性方法之间差距的新兴领域。
 
大多数复杂系统模型通常是根据统计物理学、信息论和非线性动力学的概念来制定的;这些方法并不关注或者说不包括与组织、拓扑属性或代数拓扑有关的复杂性的概念部分,如基因组、交互体和生物有机体的网络连通性这些重要概念。近年来,人们把以信息论、网络拓扑/抽象图论概念为基础的两种互补方法在神经科学和人类认知等领域结合起来。人们普遍认为,组织的复杂程度存在一种应与本体论的现实层次相区别层次结构,现代等级分类的分类方法也承认生物圈的例如:生物领域和生物圈、生物的界、门、纲、目、科、属和种等复杂层次结构。由于生物体具有动态性和组成的可变性、内在的“模糊性”、自生属性、自我繁殖的能力等等,生物体不符合一般系统的“标准”的定义,因此它们在功能和结构上都是“超级复杂”的;因此,在CSB中,生物体只能被定义为一种简单动态系统,“元系统”。这样一个有机体、物种、“生态系统”等等的元系统定义,并不等同于自生系统理论中对系统中的系统的定义。它也不同于K·D·帕尔默在元系统工程中提出的定义,即生物体不同于具有固定输入输出转换函数的机器和自动机,或不同于具有固定相空间的连续动力系统,这与笛卡尔哲学思想相反;因此,尽管“非确定性自动机”和“模糊自动机”也被定义了,但生物体不能仅仅用五组a(状态、启动状态、输入和输出集/字母、转换函数)来定义。然而,棋盘自动机 tessellation automata或元胞自动机 cellular automata 提供了一种直观的、可视化的/计算的视角来洞察较低层次的复杂性,因此已经成为一种越来越流行的离散模型,研究领域包括可计算理论、应用数学、物理、计算机科学、理论生物学/系统生物学、癌症模拟和微观结构建模。利用遗传算法实现元胞自动机是一个桥接棋盘自动机和CSB中的高层次复杂性方法之间差距的新兴领域。
第17行: 第18行:  
==复杂系统生物学的主题==
 
==复杂系统生物学的主题==
   −
[[File:DNA animation.gif|thumb|right|100px|Animated Molecular Model of a DNA [[double helix]]]]
+
[[File:DNA_animation.gif|thumb|right|100px|Animated Molecular Model of a DNA [[double helix]]]]
    
一个DNA[[双螺旋]]的动画分子模型
 
一个DNA[[双螺旋]]的动画分子模型
   −
[[File:Telomerase illustration.jpg|thumb|right|296px|Telomerase structure and function]]
+
[[File:Telomerase_illustration.jpg|thumb|right|296px|Telomerase structure and function]]
    
端粒酶的结构与功能
 
端粒酶的结构与功能
   −
[[File:MAPKpathway diagram.svg|thumb|right|140px|A Complex Signal Transduction Pathway]]
+
[[File:MAPKpathway_diagram.svg|thumb|right|140px|A Complex Signal Transduction Pathway]]
    
一个复杂的信号转导途径
 
一个复杂的信号转导途径
7,129

个编辑