更改

添加436字节 、 2020年11月4日 (三) 14:58
第70行: 第70行:  
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
   −
==In terms of pdf's for continuous distributions==
+
== In terms of pdf's for continuous distributions 关于连续分布的概率密度函数 ==
 +
 
 
For (absolutely) continuous random variables <math>X</math>, <math>Y</math>, and <math>Z</math> with [[Support (mathematics)|support sets]] <math>\mathcal{X}</math>, <math>\mathcal{Y}</math> and <math>\mathcal{Z}</math>, the conditional mutual information <math>I(X;Y|Z)</math> is as follows
 
For (absolutely) continuous random variables <math>X</math>, <math>Y</math>, and <math>Z</math> with [[Support (mathematics)|support sets]] <math>\mathcal{X}</math>, <math>\mathcal{Y}</math> and <math>\mathcal{Z}</math>, the conditional mutual information <math>I(X;Y|Z)</math> is as follows
 +
对于具有支持集<math>X</math>, <math>Y</math>, 和 <math>Z</math>的(绝对)连续随机变量<math>\mathcal{X}</math>, <math>\mathcal{Y}</math> 和 <math>\mathcal{Z}</math>,条件交互信息<math>I(X;Y|Z)</math>如下
 +
 +
 
:<math>
 
:<math>
 
I(X;Y|Z) = \int_{\mathcal{Z}} \bigg( \int_{\mathcal{Y}} \int_{\mathcal{X}}
 
I(X;Y|Z) = \int_{\mathcal{Z}} \bigg( \int_{\mathcal{Y}} \int_{\mathcal{X}}
 
       \log \left(\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}(x|z)p_{Y|Z}(y|z)}\right) p_{X,Y|Z}(x,y|z) dx dy \bigg) p_Z(z) dz
 
       \log \left(\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}(x|z)p_{Y|Z}(y|z)}\right) p_{X,Y|Z}(x,y|z) dx dy \bigg) p_Z(z) dz
 
</math>
 
</math>
 +
 +
 
where the marginal, joint, and/or conditional [[probability density function]]s are denoted by <math>p</math> with the appropriate subscript. This can be simplified as
 
where the marginal, joint, and/or conditional [[probability density function]]s are denoted by <math>p</math> with the appropriate subscript. This can be simplified as
 +
 +
其中边缘概率密度函数,联合概率密度函数,和(或)条件概率密度函数可以由p加上适当的下标表示。这可以简化为
 +
    
{{Equation box 1
 
{{Equation box 1
961

个编辑