第151行: |
第151行: |
| :<math> I(X;Y|Z) = \sum_{y \in \mathcal{Y}} p( Y=y ) D_{\mathrm{KL}}[ p(X,Z|y) \| p(X|Z)p(Z|y) ]</math>. | | :<math> I(X;Y|Z) = \sum_{y \in \mathcal{Y}} p( Y=y ) D_{\mathrm{KL}}[ p(X,Z|y) \| p(X|Z)p(Z|y) ]</math>. |
| | | |
− | ==More general definition== | + | == More general definition 其他定义== |
− | A more general definition of conditional mutual information, applicable to random variables with continuous or other arbitrary distributions, will depend on the concept of '''[[regular conditional probability]]'''. (See also.<ref>[http://planetmath.org/encyclopedia/ConditionalProbabilityMeasure.html Regular Conditional Probability] on [http://planetmath.org/ PlanetMath]</ref><ref>D. Leao, Jr. et al. ''Regular conditional probability, disintegration of probability and Radon spaces.'' Proyecciones. Vol. 23, No. 1, pp. 15–29, May 2004, Universidad Católica del Norte, Antofagasta, Chile [http://www.scielo.cl/pdf/proy/v23n1/art02.pdf PDF]</ref>) | + | A more general definition of conditional mutual information, applicable to random variables with continuous or other arbitrary distributions, will depend on the concept of '''[[regular conditional probability]]'''. (See also. <ref>[http://planetmath.org/encyclopedia/ConditionalProbabilityMeasure.html Regular Conditional Probability] on [http://planetmath.org/ PlanetMath]</ref><ref>D. Leao, Jr. et al. ''Regular conditional probability, disintegration of probability and Radon spaces.'' Proyecciones. Vol. 23, No. 1, pp. 15–29, May 2004, Universidad Católica del Norte, Antofagasta, Chile [http://www.scielo.cl/pdf/proy/v23n1/art02.pdf PDF]</ref>) |
| + | |
| + | 条件交互信息的其他通用定义(适用于具有连续或其他任意分布的随机变量)将取决于正则条件概率的概念。 |
| + | |
| + | |
| | | |
| Let <math>(\Omega, \mathcal F, \mathfrak P)</math> be a [[probability space]], and let the random variables <math>X</math>, <math>Y</math>, and <math>Z</math> each be defined as a Borel-measurable function from <math>\Omega</math> to some state space endowed with a topological structure. | | Let <math>(\Omega, \mathcal F, \mathfrak P)</math> be a [[probability space]], and let the random variables <math>X</math>, <math>Y</math>, and <math>Z</math> each be defined as a Borel-measurable function from <math>\Omega</math> to some state space endowed with a topological structure. |
| + | |
| + | 令<math>(\Omega, \mathcal F, \mathfrak P)</math>为一个概率空间,并将随机变量<math>X</math>, <math>Y</math>, 和 <math>Z</math>分别定义为一个从<math>\Omega</math>到具有拓扑结构的状态空间的'''<font color="#ff8000"> 波莱尔可测函数Borel-measurable function </font>'''。 |
| + | |
| + | |
| | | |
| Consider the Borel measure (on the σ-algebra generated by the open sets) in the state space of each random variable defined by assigning each Borel set the <math>\mathfrak P</math>-measure of its preimage in <math>\mathcal F</math>. This is called the [[pushforward measure]] <math>X _* \mathfrak P = \mathfrak P\big(X^{-1}(\cdot)\big).</math> The '''support of a random variable''' is defined to be the [[Support (measure theory)|topological support]] of this measure, i.e. <math>\mathrm{supp}\,X = \mathrm{supp}\,X _* \mathfrak P.</math> | | Consider the Borel measure (on the σ-algebra generated by the open sets) in the state space of each random variable defined by assigning each Borel set the <math>\mathfrak P</math>-measure of its preimage in <math>\mathcal F</math>. This is called the [[pushforward measure]] <math>X _* \mathfrak P = \mathfrak P\big(X^{-1}(\cdot)\big).</math> The '''support of a random variable''' is defined to be the [[Support (measure theory)|topological support]] of this measure, i.e. <math>\mathrm{supp}\,X = \mathrm{supp}\,X _* \mathfrak P.</math> |
| + | |
| + | 考虑到在每个随机变量状态空间中的'''<font color="#ff8000"> 波莱尔测度Borel measure</font>'''(关于开放集生成的σ代数),是由每个波莱尔集分配到的<math>\mathcal F</math>中的原像<math>\mathfrak P</math>测度来确定的。这被称为'''<font color="#ff8000"> 前推测度Pushforward measure </font>''' <math>X _* \mathfrak P = \mathfrak P\big(X^{-1}(\cdot)\big).</math>。随机变量的支撑集定义为该测度的拓扑支撑集,即<math>\mathrm{supp}\,X = \mathrm{supp}\,X _* \mathfrak P.</math>。 |
| + | |
| + | |
| | | |
| Now we can formally define the [[conditional probability distribution|conditional probability measure]] given the value of one (or, via the [[product topology]], more) of the random variables. Let <math>M</math> be a measurable subset of <math>\Omega,</math> (i.e. <math>M \in \mathcal F,</math>) and let <math>x \in \mathrm{supp}\,X.</math> Then, using the [[disintegration theorem]]: | | Now we can formally define the [[conditional probability distribution|conditional probability measure]] given the value of one (or, via the [[product topology]], more) of the random variables. Let <math>M</math> be a measurable subset of <math>\Omega,</math> (i.e. <math>M \in \mathcal F,</math>) and let <math>x \in \mathrm{supp}\,X.</math> Then, using the [[disintegration theorem]]: |
| + | |
| + | 现在,我们可以在给定其中一个随机变量值(或通过积拓扑获得更多)的情况下正式定义条件概率测度。令<math>M</math>为<math>\Omega,</math>的可测子集(即<math>M \in \mathcal F,</math>,),令<math>x \in \mathrm{supp}\,X.</math>。然后,使用分解定理: |
| + | |
| + | |
| :<math>\mathfrak P(M | X=x) = \lim_{U \ni x} | | :<math>\mathfrak P(M | X=x) = \lim_{U \ni x} |
| \frac {\mathfrak P(M \cap \{X \in U\})} | | \frac {\mathfrak P(M \cap \{X \in U\})} |
| {\mathfrak P(\{X \in U\})} | | {\mathfrak P(\{X \in U\})} |
| \qquad \textrm{and} \qquad \mathfrak P(M|X) = \int_M d\mathfrak P\big(\omega|X=X(\omega)\big),</math> | | \qquad \textrm{and} \qquad \mathfrak P(M|X) = \int_M d\mathfrak P\big(\omega|X=X(\omega)\big),</math> |
| + | |
| + | |
| where the limit is taken over the open neighborhoods <math>U</math> of <math>x</math>, as they are allowed to become arbitrarily smaller with respect to [[Subset|set inclusion]]. | | where the limit is taken over the open neighborhoods <math>U</math> of <math>x</math>, as they are allowed to become arbitrarily smaller with respect to [[Subset|set inclusion]]. |
| + | |
| + | 在<math>x</math>的开放邻域<math>U</math>处采用极限,因为相对于'''<font color="#ff8000"> 集包含Set inclusion</font>''',它们可以任意变小。 |
| + | |
| + | |
| | | |
| Finally we can define the conditional mutual information via [[Lebesgue integration]]: | | Finally we can define the conditional mutual information via [[Lebesgue integration]]: |
| + | |
| + | 最后,我们可以通过'''<font color="#ff8000"> 勒贝格积分Lebesgue integration</font>'''来定义条件交互信息: |
| + | |
| + | |
| :<math>I(X;Y|Z) = \int_\Omega \log | | :<math>I(X;Y|Z) = \int_\Omega \log |
| \Bigl( | | \Bigl( |
第173行: |
第199行: |
| d \mathfrak P(\omega), | | d \mathfrak P(\omega), |
| </math> | | </math> |
| + | |
| + | |
| where the integrand is the logarithm of a [[Radon–Nikodym derivative]] involving some of the conditional probability measures we have just defined. | | where the integrand is the logarithm of a [[Radon–Nikodym derivative]] involving some of the conditional probability measures we have just defined. |
| + | 其中被积函数是'''<font color="#ff8000"> 拉东-尼科迪姆导数Radon–Nikodym derivative</font>'''的对数,涉及我们刚刚定义的一些条件概率测度。 |
| | | |
| ==Note on notation== | | ==Note on notation== |