第275行: |
第275行: |
| f(k, n, p) is monotone increasing for k < M and monotone decreasing for k > M, with the exception of the case where (n + 1)p is an integer. In this case, there are two values for which f is maximal: (n + 1)p and (n + 1)p − 1. M is the most probable outcome (that is, the most likely, although this can still be unlikely overall) of the Bernoulli trials and is called the mode. | | f(k, n, p) is monotone increasing for k < M and monotone decreasing for k > M, with the exception of the case where (n + 1)p is an integer. In this case, there are two values for which f is maximal: (n + 1)p and (n + 1)p − 1. M is the most probable outcome (that is, the most likely, although this can still be unlikely overall) of the Bernoulli trials and is called the mode. |
| | | |
− | ''f''(''k'', ''n'', ''p'')对''k'' < ''M'' 是单调递增的,对''k'' > ''M'' 是单调递减的,但(''n'' + 1)''p''是整数的情况除外。在这种情况下,有(''n'' + 1)''p'' 和 (''n'' + 1)''p'' −1 两个值使''f''达到最大。''M'' 是伯努利试验最有可能的结果(也就是说,发生的可能性最大,尽管仍然存在不发生的情况) ,被称为模。 | + | ''f''(''k'', ''n'', ''p'')对''k'' < ''M'' 是单调递增的,对''k'' > ''M'' 是单调递减的,但(''n'' + 1)''p''是整数的情况除外。在这种情况下,有(''n'' + 1)''p'' 和 (''n'' + 1)''p'' −1 两个值使''f''达到最大。''M'' 是伯努利试验最有可能的结果(也就是说,发生的可能性最大,尽管仍然存在不发生的情况) ,被称为模。 |
| | | |
| | | |
第333行: |
第333行: |
| It can also be represented in terms of the regularized incomplete beta function, as follows: | | It can also be represented in terms of the regularized incomplete beta function, as follows: |
| | | |
− | 在<font color="#ff8000">正则化不完全的\beta函数 regularized incomplete beta function </font>下,它也可以表示如下: <ref>{{cite book |last=Wadsworth |first=G. P. |title=Introduction to Probability and Random Variables |year=1960 |publisher=McGraw-Hill |location=New York |page=[https://archive.org/details/introductiontopr0000wads/page/52 52] |url=https://archive.org/details/introductiontopr0000wads |url-access=registration }}</ref> | + | 在<font color="#ff8000">正则化不完全的beta函数 regularized incomplete beta function </font>下,它也可以表示如下: <ref>{{cite book |last=Wadsworth |first=G. P. |title=Introduction to Probability and Random Variables |year=1960 |publisher=McGraw-Hill |location=New York |page=[https://archive.org/details/introductiontopr0000wads/page/52 52] |url=https://archive.org/details/introductiontopr0000wads |url-access=registration }}</ref> |
| | | |
| | | |
第643行: |
第643行: |
| * The median is unique and equal to ''m'' = [[Rounding|round]](''np'') when |''m'' − ''np''| ≤ min{''p'', 1 − ''p''} (except for the case when ''p'' = {{sfrac|1|2}} and ''n'' is odd).<ref name="KaasBuhrman"/> | | * The median is unique and equal to ''m'' = [[Rounding|round]](''np'') when |''m'' − ''np''| ≤ min{''p'', 1 − ''p''} (except for the case when ''p'' = {{sfrac|1|2}} and ''n'' is odd).<ref name="KaasBuhrman"/> |
| | | |
− | *中位数是唯一的并且等于''m'' = [[Rounding|round]](''np''),此时|''m'' − ''np''| ≤ min{''p'', 1 − ''p''}(''p'' = \\sfrac{1}{2} 和 ''n'' 是奇数的情况除外) | + | *中位数是唯一的并且等于''m'' = [[Rounding|round]](''np''),此时|''m'' − ''np''| ≤ min{''p'', 1 − ''p''}(<math>''p'' = {{sfrac|1|2}}</math>和 ''n'' 是奇数的情况除外) |
| | | |
| which implies the simpler but looser bound | | which implies the simpler but looser bound |
第657行: |
第657行: |
| For p = 1/2 and k ≥ 3n/8 for even n, it is possible to make the denominator constant: | | For p = 1/2 and k ≥ 3n/8 for even n, it is possible to make the denominator constant: |
| | | |
− | 对于''p'' = 1/2且''n''是奇数,任意''m''满足\\sfrac{1}{2}(''n'' − 1) ≤ ''m'' ≤ \\sfrac{1}{2} (''n'' + 1)是一个二项分布的中位数。如果''p'' = 1/2且''n'' 是偶数,那么''m'' = ''n''/2是唯一的中位数: | + | 对于''p'' = 1/2且''n''是奇数,任意''m''满足{{sfrac|1|2}} (''n'' − 1) ≤ ''m'' ≤ {{sfrac|1|2}} (''n'' + 1)是一个二项分布的中位数。如果''p'' = 1/2且''n'' 是偶数,那么''m'' = ''n''/2是唯一的中位数: |
| | | |
| <math>F(k;n,p) \geq \frac1{\sqrt{2n}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right);</math> | | <math>F(k;n,p) \geq \frac1{\sqrt{2n}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right);</math> |
第669行: |
第669行: |
| For ''k'' ≤ ''np'', upper bounds can be derived for the lower tail of the cumulative distribution function <math>F(k;n,p) = \Pr(X \le k)</math>, the probability that there are at most ''k'' successes. Since <math>\Pr(X \ge k) = F(n-k;n,1-p) </math>, these bounds can also be seen as bounds for the upper tail of the cumulative distribution function for ''k'' ≥ ''np''. | | For ''k'' ≤ ''np'', upper bounds can be derived for the lower tail of the cumulative distribution function <math>F(k;n,p) = \Pr(X \le k)</math>, the probability that there are at most ''k'' successes. Since <math>\Pr(X \ge k) = F(n-k;n,1-p) </math>, these bounds can also be seen as bounds for the upper tail of the cumulative distribution function for ''k'' ≥ ''np''. |
| | | |
− | 对于''k''≤''np'',可以得出累积分布函数左尾的上界<math>F(k;n,p)=Pr(X \le k)</math>,即最多存在''k''次成功的概率。由于<math>/Pr(X \ge k) = F(n-k;n,1-p) </math>,这些界限也可以看作是''k''≥''np''的累积分布函数右尾的边界。 | + | 对于''k''≤''np'',可以得出累积分布函数左尾的上界<math>F(k;n,p)=Pr(X \le k)</math>,即最多存在''k''次成功的概率。由于<math>Pr(X \ge k) = F(n-k;n,1-p) </math>,这些界限也可以看作是''k''≥''np''的累积分布函数右尾的边界。 |
| | | |
| F(k;n,\tfrac{1}{2}) \geq \frac{1}{15} \exp\left(- 16n \left(\frac{1}{2} -\frac{k}{n}\right)^2\right). \! | | F(k;n,\tfrac{1}{2}) \geq \frac{1}{15} \exp\left(- 16n \left(\frac{1}{2} -\frac{k}{n}\right)^2\right). \! |
第866行: |
第866行: |
| : <math> \widehat{p\,} \pm z \sqrt{ \frac{ \widehat{p\,} ( 1 -\widehat{p\,} )}{ n } } .</math> | | : <math> \widehat{p\,} \pm z \sqrt{ \frac{ \widehat{p\,} ( 1 -\widehat{p\,} )}{ n } } .</math> |
| | | |
− | <math>\frac{ | + | <math>\frac{}\widehat{p\,} + \frac{z^2}{2n} + z</math> |
| | | |
| + | : A [[continuity correction]] of 0.5/''n'' may be added. {{clarify|date=July 2012}}; |
| | | |
− | \widehat{p\,} + \frac{z^2}{2n} + z}</math>
| + | 可以添加一个0.5/''n''连续调整。(2012年7月更新) |
| | | |
− | : A [[continuity correction]] of 0.5/''n'' may be added.{{clarify|date=July 2012}}
| + | <math> \sqrt{\frac{\widehat{p\,}(1 - \widehat{p\,})}{n} </math> |
− | \sqrt{
| |
| | | |
| + | ==== Agresti–Coull method ==== |
| | | |
− | \frac{\widehat{p\,}(1 - \widehat{p\,})}{n} +
| + | 阿格里斯蒂-库尔方法 Agresti–Coull method |
| | | |
− | ==== Agresti–Coull method ====
| + | <math> \frac{z^2}{4 n^2}</math> |
− | | |
− | \frac{z^2}{4 n^2}
| |
| | | |
| <ref name=Agresti1988>{{Citation |last1=Agresti |first1=Alan |last2=Coull |first2=Brent A. |date=May 1998 |title=Approximate is better than 'exact' for interval estimation of binomial proportions |url = http://www.stat.ufl.edu/~aa/articles/agresti_coull_1998.pdf |journal=The American Statistician |volume=52 |issue=2 |pages=119–126 |accessdate=2015-01-05 |doi=10.2307/2685469 |jstor=2685469 }}</ref> | | <ref name=Agresti1988>{{Citation |last1=Agresti |first1=Alan |last2=Coull |first2=Brent A. |date=May 1998 |title=Approximate is better than 'exact' for interval estimation of binomial proportions |url = http://www.stat.ufl.edu/~aa/articles/agresti_coull_1998.pdf |journal=The American Statistician |volume=52 |issue=2 |pages=119–126 |accessdate=2015-01-05 |doi=10.2307/2685469 |jstor=2685469 }}</ref> |
− | | + | { |
− | }
| |
− | | |
− | | |
− | }{
| |
| | | |
| :: <math> \tilde{p} \pm z \sqrt{ \frac{ \tilde{p} ( 1 - \tilde{p} )}{ n + z^2 } } .</math> | | :: <math> \tilde{p} \pm z \sqrt{ \frac{ \tilde{p} ( 1 - \tilde{p} )}{ n + z^2 } } .</math> |
第918行: |
第913行: |
| Then log(T) is approximately normally distributed with mean log(p1/p2) and variance ((1/p1) − 1)/n + ((1/p2) − 1)/m. | | Then log(T) is approximately normally distributed with mean log(p1/p2) and variance ((1/p1) − 1)/n + ((1/p2) − 1)/m. |
| | | |
− | 然后log(T)近似服从正态分布,均值为log(p1/p2)和方差为((1/p1) − 1)/n + ((1/p2) − 1)/m。 | + | 然后log(T)近似服从正态分布,均值为log(p1/p2)和方差为<math>((1/p1) − 1)/n + ((1/p2) − 1)/m</math>。 |
| | | |
| : <math>\sin^2 \left(\arcsin \left(\sqrt{\widehat{p\,}}\right) \pm \frac{z}{2\sqrt{n}} \right).</math> | | : <math>\sin^2 \left(\arcsin \left(\sqrt{\widehat{p\,}}\right) \pm \frac{z}{2\sqrt{n}} \right).</math> |
第946行: |
第941行: |
| * Firstly, ''z''<sub>''x''</sub> has a slightly different interpretation in the formula below: it has its ordinary meaning of 'the ''x''th quantile of the standard normal distribution', rather than being a shorthand for 'the (1 − ''x'')-th quantile'. | | * Firstly, ''z''<sub>''x''</sub> has a slightly different interpretation in the formula below: it has its ordinary meaning of 'the ''x''th quantile of the standard normal distribution', rather than being a shorthand for 'the (1 − ''x'')-th quantile'. |
| | | |
− | 首先,''z''<sub>''x''</sub>在下式中的解释略有不同:它的普通含义是标准正态分布''x-th''的分位数,而不是(1 − ''x'')-th分位数的简写。 | + | 首先,''z''<sub>''x''</sub>在下式中的解释略有不同:它的普通含义是标准正态分布''x-th''的分位数,而不是(1 − ''x'')-''th''分位数的简写。 |
| | | |
| | | |
| * Secondly, this formula does not use a plus-minus to define the two bounds. Instead, one may use <math>z = z_{\alpha / 2}</math> to get the lower bound, or use <math>z = z_{1 - \alpha/2}</math> to get the upper bound. For example: for a 95% confidence level the error <math>\alpha</math> = 0.05, so one gets the lower bound by using <math>z = z_{\alpha/2} = z_{0.025} = - 1.96</math>, and one gets the upper bound by using <math>z = z_{1 - \alpha/2} = z_{0.975} = 1.96</math>. | | * Secondly, this formula does not use a plus-minus to define the two bounds. Instead, one may use <math>z = z_{\alpha / 2}</math> to get the lower bound, or use <math>z = z_{1 - \alpha/2}</math> to get the upper bound. For example: for a 95% confidence level the error <math>\alpha</math> = 0.05, so one gets the lower bound by using <math>z = z_{\alpha/2} = z_{0.025} = - 1.96</math>, and one gets the upper bound by using <math>z = z_{1 - \alpha/2} = z_{0.975} = 1.96</math>. |
| | | |
− | *其次,这个公式没有使用加减法来定义两个界限。相反,我们可以使用<math>z = z_{/alpha / 2}</math>得到下限,或者使用<math>z = z_{1 - \alpha/2}</math>得到上限。例如:对于95%的置信度,误差为<math>/alpha</math> = 0.05,所以用<math>z = z_{/alpha/2} = z_{0.025} = - 1.96</math>得到下限,用<math>z = z_{1 - \alpha/2} = z_{0.975} = 1.96</math>得到上限。 | + | *其次,这个公式没有使用加减法来定义两个界限。相反,我们可以使用<math>z = z_{/alpha / 2}</math>得到下限,或者使用<math>z = z_{1 - \alpha/2}</math>得到上限。例如:对于95%的置信度,误差为<math>alpha</math> = 0.05,所以用<math>z = z_{/alpha/2} = z_{0.025} = - 1.96</math>得到下限,用<math>z = z_{1 - \alpha/2} = z_{0.975} = 1.96</math>得到上限。 |
| | | |
| | | |
第960行: |
第955行: |
| | | |
| | | |
− | <math>\begin{align} | + | <math>\begin{align}</math> |
| | | |
| :: <math>\frac{} | | :: <math>\frac{} |
| + | <math>\Pr[Y = m] &= \sum_{k = m}^{n} \Pr[Y = m \mid X = k] \Pr[X = k] \\[2pt]</math> |
| | | |
− | \Pr[Y = m] &= \sum_{k = m}^{n} \Pr[Y = m \mid X = k] \Pr[X = k] \\[2pt] | + | <math> \widehat{p\,} + \frac{z^2}{2n} + z</math> |
− | | |
− | \widehat{p\,} + \frac{z^2}{2n} + z
| |
| | | |
− | &= \sum_{k=m}^n \binom{n}{k} \binom{k}{m} p^k q^m (1-p)^{n-k} (1-q)^{k-m}
| + | <math> &= \sum_{k=m}^n \binom{n}{k} \binom{k}{m} p^k q^m (1-p)^{n-k} (1-q)^{k-m}</math> |
| | | |
− | \sqrt{ | + | \sqrt{} |
| | | |
− | \end{align}</math>
| + | <math> \end{align}</math> |
| | | |
| <math>\frac{\widehat{p\,}(1 - \widehat{p\,})}{n} </math> | | <math>\frac{\widehat{p\,}(1 - \widehat{p\,})}{n} </math> |
第980行: |
第974行: |
| 由于<math>\tbinom{n}{k} \tbinom{k}{m} = \tbinom{n}{m} \tbinom{n-m}{k-m}</math>,上述方程可表示为 | | 由于<math>\tbinom{n}{k} \tbinom{k}{m} = \tbinom{n}{m} \tbinom{n-m}{k-m}</math>,上述方程可表示为 |
| | | |
− | <math> \frac{z^2}{4 n^2} | + | <math> \frac{z^2}{4 n^2}</math> |
| | | |
− | \Pr[Y = m] = \sum_{k=m}^{n} \binom{n}{m} \binom{n-m}{k-m} p^k q^m (1-p)^{n-k} (1-q)^{k-m} </math>
| + | <math> \Pr[Y = m] = \sum_{k=m}^{n} \binom{n}{m} \binom{n-m}{k-m} p^k q^m (1-p)^{n-k} (1-q)^{k-m} </math> |
| | | |
| Factoring p^k = p^m p^{k-m} and pulling all the terms that don't depend on k out of the sum now yields | | Factoring p^k = p^m p^{k-m} and pulling all the terms that don't depend on k out of the sum now yields |
第990行: |
第984行: |
| }{ | | }{ |
| | | |
− | <math>\begin{align} | + | <math>\begin{align}</math> |
| | | |
− | 1 + \frac{z^2}{n}
| + | <math> 1 + \frac{z^2}{n}</math> |
| | | |
− | \Pr[Y = m] &= \binom{n}{m} p^m q^m \left( \sum_{k=m}^n \binom{n-m}{k-m} p^{k-m} (1-p)^{n-k} (1-q)^{k-m} \right) \\[2pt]
| + | <math> \Pr[Y = m] &= \binom{n}{m} p^m q^m \left( \sum_{k=m}^n \binom{n-m}{k-m} p^{k-m} (1-p)^{n-k} (1-q)^{k-m} \right) \\[2pt]}</math><ref>{{cite book |
| | | |
− | }</math><ref>{{cite book}}
| + | <math> &= \binom{n}{m} (pq)^m \left( \sum_{k=m}^n \binom{n-m}{k-m} \left(p(1-q)\right)^{k-m} (1-p)^{n-k} \right)</math> |
− | | |
− | &= \binom{n}{m} (pq)^m \left( \sum_{k=m}^n \binom{n-m}{k-m} \left(p(1-q)\right)^{k-m} (1-p)^{n-k} \right)
| |
| | | |
| | chapter = Confidence intervals | | | chapter = Confidence intervals |
| | | |
− | \end{align}</math>
| |
| | | |
| | chapter-url = http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm | | | chapter-url = http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm |
| | | |
| After substituting i = k - m in the expression above, we get | | After substituting i = k - m in the expression above, we get |
− |
| |
− | 在上面的表达式中用 i = k-m 代替后,我们得到了
| |
| | | |
| | title = Engineering Statistics Handbook | | | title = Engineering Statistics Handbook |
第1,017行: |
第1,006行: |
| | | |
| Notice that the sum (in the parentheses) above equals (p - pq + 1 - p)^{n-m} by the binomial theorem. Substituting this in finally yields | | Notice that the sum (in the parentheses) above equals (p - pq + 1 - p)^{n-m} by the binomial theorem. Substituting this in finally yields |
− |
| |
− | 注意,上面的和(在括号中)等于(p-pq + 1-p) ^ { n-m }二项式定理。最终将其替换为
| |
| | | |
| | year = 2012 | | | year = 2012 |
− |
| |
− | <math>\begin{align}
| |
| | | |
| 1.1.1.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3 | | 1.1.1.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3 |
第1,028行: |
第1,013行: |
| | access-date = 2017-07-23 | | | access-date = 2017-07-23 |
| | | |
− | \Pr[Y=m] &= \binom{n}{m} (pq)^m (p - pq + 1 - p)^{n-m}\\[4pt]
| + | <math> \Pr[Y=m] &= \binom{n}{m} (pq)^m (p - pq + 1 - p)^{n-m}\\[4pt]</math> |
| | | |
| }}</ref> | | }}</ref> |
| | | |
− | &= \binom{n}{m} (pq)^m (1-pq)^{n-m}
| + | <math> &= \binom{n}{m} (pq)^m (1-pq)^{n-m}</math> |
− | | |
− | | |
− | | |
− | \end{align}</math>
| |
| | | |
| ==== Comparison ==== | | ==== Comparison ==== |
第1,079行: |
第1,060行: |
| | | |
| | | |
− | :<math>\begin{align} | + | :<math>\operatorname P(Z=k) &= \sum_{i=0}^k\left[\binom{n}i p^i (1-p)^{n-i}\right]\left[\binom{m}{k-i} p^{k-i} (1-p)^{m-k+i}\right]\\</math> |
− | | |
− | \operatorname P(Z=k) &= \sum_{i=0}^k\left[\binom{n}i p^i (1-p)^{n-i}\right]\left[\binom{m}{k-i} p^{k-i} (1-p)^{m-k+i}\right]\\
| |
| | | |
| Binomial [[probability mass function and normal probability density function approximation for n = 6 and p = 0.5]] | | Binomial [[probability mass function and normal probability density function approximation for n = 6 and p = 0.5]] |
第1,087行: |
第1,066行: |
| 二项式n = 6 and p = 0.5的概率质量函数和正态概率密度函数近似 | | 二项式n = 6 and p = 0.5的概率质量函数和正态概率密度函数近似 |
| | | |
− | &= \binom{n+m}k p^k (1-p)^{n+m-k}
| + | <math> &= \binom{n+m}k p^k (1-p)^{n+m-k}</math> |
| | | |
− | \end{align}</math>
| |
| | | |
| If n is large enough, then the skew of the distribution is not too great. In this case a reasonable approximation to B(n, p) is given by the normal distribution | | If n is large enough, then the skew of the distribution is not too great. In this case a reasonable approximation to B(n, p) is given by the normal distribution |
第1,173行: |
第1,151行: |
| 由于<math> X \sim B(n, p) </math>和<math> Y \sim B(X, q) </math>,由全概率公式, | | 由于<math> X \sim B(n, p) </math>和<math> Y \sim B(X, q) </math>,由全概率公式, |
| | | |
− | :<math>\begin{align} | + | :<math>\Pr[Y = m] &= \sum_{k = m}^{n} \Pr[Y = m \mid X = k] \Pr[X = k] \\[2pt]</math> |
− | | |
− | \Pr[Y = m] &= \sum_{k = m}^{n} \Pr[Y = m \mid X = k] \Pr[X = k] \\[2pt]
| |
| | | |
− | P(p;\alpha,\beta) = \frac{p^{\alpha-1}(1-p)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}. | + | <math>P(p;\alpha,\beta) = \frac{p^{\alpha-1}(1-p)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}.</math> |
| | | |
− | P (p; alpha,beta) = frac { p ^ { alpha-1}(1-p) ^ { beta-1}{ mathrm { b }(alpha,beta)}}. | + | <math>P (p; alpha,beta) = frac { p ^ { alpha-1}(1-p) ^ { beta-1}{ mathrm { b }(alpha,beta)}}. |
| | | |
− | &= \sum_{k=m}^n \binom{n}{k} \binom{k}{m} p^k q^m (1-p)^{n-k} (1-q)^{k-m} | + | &= \sum_{k=m}^n \binom{n}{k} \binom{k}{m} p^k q^m (1-p)^{n-k} (1-q)^{k-m}</math> |
| | | |
| Given a uniform prior, the posterior distribution for the probability of success given independent events with observed successes is a beta distribution. | | Given a uniform prior, the posterior distribution for the probability of success given independent events with observed successes is a beta distribution. |
第1,187行: |
第1,163行: |
| 给定一个一致性先验,给定观察到成功结果的独立事件成功概率的后验分布是一个beta分布。 | | 给定一个一致性先验,给定观察到成功结果的独立事件成功概率的后验分布是一个beta分布。 |
| | | |
− | \end{align}</math>
| |
| | | |
| Since <math>\tbinom{n}{k} \tbinom{k}{m} = \tbinom{n}{m} \tbinom{n-m}{k-m},</math> the equation above can be expressed as | | Since <math>\tbinom{n}{k} \tbinom{k}{m} = \tbinom{n}{m} \tbinom{n-m}{k-m},</math> the equation above can be expressed as |
第1,203行: |
第1,178行: |
| <font color="#ff8000">边缘分布 marginal distribution </font>是二项分布较完善的随机数产生方法。 | | <font color="#ff8000">边缘分布 marginal distribution </font>是二项分布较完善的随机数产生方法。 |
| | | |
− | :<math>\begin{align} | + | :<math>\Pr[Y = m] &= \binom{n}{m} p^m q^m \left( \sum_{k=m}^n \binom{n-m}{k-m} p^{k-m} (1-p)^{n-k} (1-q)^{k-m} \right) \\[2pt]</math> |
− | | |
− | \Pr[Y = m] &= \binom{n}{m} p^m q^m \left( \sum_{k=m}^n \binom{n-m}{k-m} p^{k-m} (1-p)^{n-k} (1-q)^{k-m} \right) \\[2pt]
| |
| | | |
| One way to generate random samples from a binomial distribution is to use an inversion algorithm. To do so, one must calculate the probability that for all values from through . (These probabilities should sum to a value close to one, in order to encompass the entire sample space.) Then by using a pseudorandom number generator to generate samples uniformly between 0 and 1, one can transform the calculated samples into discrete numbers by using the probabilities calculated in the first step. | | One way to generate random samples from a binomial distribution is to use an inversion algorithm. To do so, one must calculate the probability that for all values from through . (These probabilities should sum to a value close to one, in order to encompass the entire sample space.) Then by using a pseudorandom number generator to generate samples uniformly between 0 and 1, one can transform the calculated samples into discrete numbers by using the probabilities calculated in the first step. |
第1,259行: |
第1,232行: |
| | | |
| The binomial distribution is a special case of the [[Poisson binomial distribution]], or [[general binomial distribution]], which is the distribution of a sum of ''n'' independent non-identical [[Bernoulli trials]] B(''p<sub>i</sub>'').<ref> | | The binomial distribution is a special case of the [[Poisson binomial distribution]], or [[general binomial distribution]], which is the distribution of a sum of ''n'' independent non-identical [[Bernoulli trials]] B(''p<sub>i</sub>'').<ref> |
− |
| |
− | 二项分布是泊松二项分布或广义二项分布的特例,它是''n''个独立的不相同的伯努利试验之和的分布。B(''p<sub>i</sub>'') <ref>
| |
− |
| |
− |
| |
| {{Cite journal | | {{Cite journal |
| | | |
第1,290行: |
第1,259行: |
| | | |
| }} | | }} |
| + | </ref> |
| | | |
− | </ref> | + | 二项分布是泊松二项分布或广义二项分布的特例,它是''n''个独立的不相同的伯努利试验之和的分布。B(''p<sub>i</sub>'') <ref>{{Cite journal | volume = 3 | issue = 2 | pages = 295–312 | last = Wang | first = Y. H. | title = On the number of successes in independent trials | journal = Statistica Sinica | year = 1993 | url = http://www3.stat.sinica.edu.tw/statistica/oldpdf/A3n23.pdf | url-status = dead | archiveurl = https://web.archive.org/web/20160303182353/http://www3.stat.sinica.edu.tw/statistica/oldpdf/A3n23.pdf | archivedate = 2016-03-03}}</ref> |
| | | |
| | | |