更改

添加232字节 、 2020年11月30日 (一) 22:50
第210行: 第210行:  
在一个[[离散和连续时间|离散时间]]系统中,<font color="#ff8000"> 吸引子</font>可以以有限数量的点的形式依次访问。每个点都称为[[周期点]]。[[逻辑图]]说明了这一点,根据其特定参数值,对于任何“n”值,可以有由2<sup>''n''</sup>点、3×2<sup>''n''</sup>点等组成的<font color="#ff8000"> 吸引子</font>。
 
在一个[[离散和连续时间|离散时间]]系统中,<font color="#ff8000"> 吸引子</font>可以以有限数量的点的形式依次访问。每个点都称为[[周期点]]。[[逻辑图]]说明了这一点,根据其特定参数值,对于任何“n”值,可以有由2<sup>''n''</sup>点、3×2<sup>''n''</sup>点等组成的<font color="#ff8000"> 吸引子</font>。
   −
=== Limit cycle ===
+
=== Limit cycle 极限环===
    
{{main|Limit cycle}}
 
{{main|Limit cycle}}
 +
{{main |极限环}}
    
A [[limit cycle]] is a periodic orbit of a continuous dynamical system that is [[isolated point|isolated]].  Examples include the swings of a [[pendulum clock]], and the heartbeat while resting. (The limit cycle of an ideal pendulum is not an example of a limit cycle attractor because its orbits are not isolated: in the phase space of the ideal pendulum, near any point of a periodic orbit there is another point that belongs to a different periodic orbit, so the former orbit is not attracting).
 
A [[limit cycle]] is a periodic orbit of a continuous dynamical system that is [[isolated point|isolated]].  Examples include the swings of a [[pendulum clock]], and the heartbeat while resting. (The limit cycle of an ideal pendulum is not an example of a limit cycle attractor because its orbits are not isolated: in the phase space of the ideal pendulum, near any point of a periodic orbit there is another point that belongs to a different periodic orbit, so the former orbit is not attracting).
第218行: 第219行:  
A limit cycle is a periodic orbit of a continuous dynamical system that is isolated.  Examples include the swings of a pendulum clock, and the heartbeat while resting. (The limit cycle of an ideal pendulum is not an example of a limit cycle attractor because its orbits are not isolated: in the phase space of the ideal pendulum, near any point of a periodic orbit there is another point that belongs to a different periodic orbit, so the former orbit is not attracting).
 
A limit cycle is a periodic orbit of a continuous dynamical system that is isolated.  Examples include the swings of a pendulum clock, and the heartbeat while resting. (The limit cycle of an ideal pendulum is not an example of a limit cycle attractor because its orbits are not isolated: in the phase space of the ideal pendulum, near any point of a periodic orbit there is another point that belongs to a different periodic orbit, so the former orbit is not attracting).
   −
极限环是一个孤立的连续动力系统的周期轨道。例如摆钟的摆动,以及休息时的心跳。(理想摆的极限环不是极限环吸引子的例子,因为它的轨道不是孤立的: 在理想摆的相空间中,周期轨道的任何一点附近都有另一个点属于不同的周期轨道,所以前一个轨道不吸引)。
+
[[极限环]]是连续动力系统的周期轨道,它是[[孤立点|孤立]]。例如[[钟摆时钟]]的摆动,以及休息时的心跳。(理想摆的极限环不是极限环吸引子的一个例子,因为它的轨道不是孤立的:在理想摆的相空间中,在一个周期轨道的任何一个点附近都有另一个点属于不同周期轨道,因此前一个轨道不具有吸引力)。
          
[[File:VanDerPolPhaseSpace.png|center|250px|thumb|<center>[[Van der Pol oscillator|Van der Pol]] [[phase portrait]]: an attracting limit cycle</center>]]
 
[[File:VanDerPolPhaseSpace.png|center|250px|thumb|<center>[[Van der Pol oscillator|Van der Pol]] [[phase portrait]]: an attracting limit cycle</center>]]
 +
 +
[[文件:VanDerPolPhaseSpace.png|center| 250px |拇指|<center>[[Van der Pol振荡器| Van der Pol]][[相位肖像]]:吸引极限环</center>]]
    
Van der Pol phase portrait: an attracting limit cycle</center>]]
 
Van der Pol phase portrait: an attracting limit cycle</center>]]
   −
范德波尔相图: 一个吸引极限环 </center > ]
+
范德波尔相图: 一个吸引极限环 </center>]]
 
  −
 
      
=== Limit torus ===
 
=== Limit torus ===
561

个编辑