更改

添加4,989字节 、 2020年12月1日 (二) 00:02
第336行: 第336行:  
齐次形式的单变量(单变量)线性差分方程<math>x_t=ax{t-1}</math>从除0以外的所有初始点| A>1发散到无穷大;没有吸引子,因此没有吸引池。但是如果| a |<1,则数线图上的所有点渐进地(或在0的情况下直接)到0;0是吸引子,整个数线是吸引域。
 
齐次形式的单变量(单变量)线性差分方程<math>x_t=ax{t-1}</math>从除0以外的所有初始点| A>1发散到无穷大;没有吸引子,因此没有吸引池。但是如果| a |<1,则数线图上的所有点渐进地(或在0的情况下直接)到0;0是吸引子,整个数线是吸引域。
   −
==Basins of attraction==
+
==Basins of attraction吸引区==
      第342行: 第342行:  
Likewise, a linear matrix difference equation in a dynamic vector X, of the homogeneous form <math>X_t=AX_{t-1}</math> in terms of square matrix A will have all elements of the dynamic vector diverge to infinity if the largest eigenvalue of A is greater than 1 in absolute value; there is no attractor and no basin of attraction. But if the largest eigenvalue is less than 1 in magnitude, all initial vectors will asymptotically converge to the zero vector, which is the attractor; the entire n-dimensional space of potential initial vectors is the basin of attraction.
 
Likewise, a linear matrix difference equation in a dynamic vector X, of the homogeneous form <math>X_t=AX_{t-1}</math> in terms of square matrix A will have all elements of the dynamic vector diverge to infinity if the largest eigenvalue of A is greater than 1 in absolute value; there is no attractor and no basin of attraction. But if the largest eigenvalue is less than 1 in magnitude, all initial vectors will asymptotically converge to the zero vector, which is the attractor; the entire n-dimensional space of potential initial vectors is the basin of attraction.
   −
同样,如果动态矢量 x 的最大特征值在绝对值上大于1,则动态矢量 a 的所有元素都发散到无穷远,不存在吸引子,也不存在吸引盆。但当最大特征值小于1时,所有初始向量都渐近收敛到零向量,零向量是吸引子,位初始向量的整个 n 维空间是吸引盆。
+
同样地,动态向量X中的线性矩阵差分方程,如果a的最大特征值绝对值大于1,则动态向量X中的所有元素都将发散到无穷大;不存在吸引子和吸引池。但如果最大特征值小于1,则所有初始向量将渐近收敛于零向量,即吸引子;潜在初始向量的整个n维空间就是吸引池。
    
An attractor's '''basin of attraction''' is the region of the [[phase space]], over which iterations are defined, such that any point (any [[initial condition]]) in that region will [[asymptotic behavior|asymptotically]] be iterated into the attractor. For a [[stability (mathematics)|stable]] [[linear system]], every point in the phase space is in the basin of attraction. However, in [[nonlinear system]]s, some points may map directly or asymptotically to infinity, while other points may lie in a different basin of attraction and map asymptotically into a different attractor; other initial conditions may be in or map directly into a non-attracting point or cycle.<ref>{{cite journal|last1=Strelioff|first1=C.|last2=Hübler|first2=A.|title=Medium-Term Prediction of Chaos|journal=Phys. Rev. Lett.|date=2006|volume=96|issue=4|doi=10.1103/PhysRevLett.96.044101|pmid=16486826|page=044101}}</ref>
 
An attractor's '''basin of attraction''' is the region of the [[phase space]], over which iterations are defined, such that any point (any [[initial condition]]) in that region will [[asymptotic behavior|asymptotically]] be iterated into the attractor. For a [[stability (mathematics)|stable]] [[linear system]], every point in the phase space is in the basin of attraction. However, in [[nonlinear system]]s, some points may map directly or asymptotically to infinity, while other points may lie in a different basin of attraction and map asymptotically into a different attractor; other initial conditions may be in or map directly into a non-attracting point or cycle.<ref>{{cite journal|last1=Strelioff|first1=C.|last2=Hübler|first2=A.|title=Medium-Term Prediction of Chaos|journal=Phys. Rev. Lett.|date=2006|volume=96|issue=4|doi=10.1103/PhysRevLett.96.044101|pmid=16486826|page=044101}}</ref>
   −
 
+
吸引子的“吸引域”是[[相空间]]的区域,在该区域上定义迭代,因此该区域中的任何点(任何[[初始条件]])将[[渐近行为|渐进]]迭代到吸引子中。对于一个[[稳定性(数学)|稳定]][[线性系统]],相空间中的每一点都在吸引域中。然而,在[[非线性系统]]s中,有些点可能直接或渐近地映射到无穷大,而另一些点可能位于不同的吸引域中并渐进地映射到不同的吸引子;其他初始条件可能在或直接映射到一个非吸引点或循环中。<ref>{{cite journal|last1=Strelioff|first1=C.|last2=Hübler|first2=A.|title=Medium-Term Prediction of Chaos|journal=Phys. Rev. Lett.|date=2006|volume=96|issue=4|doi=10.1103/PhysRevLett.96.044101|pmid=16486826|page=044101}}</ref>
    
Similar features apply to linear differential equations. The scalar equation <math> dx/dt =ax</math> causes all initial values of x except zero to diverge to infinity if a > 0 but to converge to an attractor at the value 0 if a < 0, making the entire number line the basin of attraction for 0. And the matrix system <math>dX/dt=AX</math> gives divergence from all initial points except the vector of zeroes if any eigenvalue of the matrix A is positive; but if all the eigenvalues are negative the vector of zeroes is an attractor whose basin of attraction is the entire phase space.
 
Similar features apply to linear differential equations. The scalar equation <math> dx/dt =ax</math> causes all initial values of x except zero to diverge to infinity if a > 0 but to converge to an attractor at the value 0 if a < 0, making the entire number line the basin of attraction for 0. And the matrix system <math>dX/dt=AX</math> gives divergence from all initial points except the vector of zeroes if any eigenvalue of the matrix A is positive; but if all the eigenvalues are negative the vector of zeroes is an attractor whose basin of attraction is the entire phase space.
第352行: 第352行:  
类似的特征也适用于线性微分方程。标量方程 < math > dx/dt = ax </math > 导致除0以外的所有 x 的初始值在 a > 0时发散到无穷大,但在 a < 0时收敛到吸引子,使得整个数列沿着吸引盆的方向为0。矩阵系统 < math > dX/dt = AX </math > 如果矩阵 a 的任何特征值是正的,则该矩阵系统从除零向量以外的所有初始点发散; 但如果所有特征值都是负的,则零向量是吸引域为整个相空间的吸引子。
 
类似的特征也适用于线性微分方程。标量方程 < math > dx/dt = ax </math > 导致除0以外的所有 x 的初始值在 a > 0时发散到无穷大,但在 a < 0时收敛到吸引子,使得整个数列沿着吸引盆的方向为0。矩阵系统 < math > dX/dt = AX </math > 如果矩阵 a 的任何特征值是正的,则该矩阵系统从除零向量以外的所有初始点发散; 但如果所有特征值都是负的,则零向量是吸引域为整个相空间的吸引子。
   −
===Linear equation or system===
+
===Linear equation or system线性方程或系统===
      第358行: 第358行:  
A single-variable (univariate) linear [[difference equation]] of the [[homogeneous equation|homogeneous form]] <math>x_t=ax_{t-1}</math> diverges to infinity if |''a''| > 1 from all initial points except 0; there is no attractor and therefore no basin of attraction. But if |''a''| < 1 all points on the number line map asymptotically (or directly in the case of 0) to 0; 0 is the attractor, and the entire number line is the basin of attraction.
 
A single-variable (univariate) linear [[difference equation]] of the [[homogeneous equation|homogeneous form]] <math>x_t=ax_{t-1}</math> diverges to infinity if |''a''| > 1 from all initial points except 0; there is no attractor and therefore no basin of attraction. But if |''a''| < 1 all points on the number line map asymptotically (or directly in the case of 0) to 0; 0 is the attractor, and the entire number line is the basin of attraction.
   −
 
+
[[齐次方程|齐次形式]]<math>x|t=ax{t-1}</math>的单变量(单变量)线性[[差分方程]]发散到无穷大,如果除了0以外的所有初始点|“A”>>1;没有吸引子,因此没有吸引池。但如果|“a”小于1,则数线图上的所有点渐进地(或在0的情况下直接映射)到0;0是吸引子,整个数线是吸引域。
    
Equations or systems that are nonlinear can give rise to a richer variety of behavior than can linear systems. One example is Newton's method of iterating to a root of a nonlinear expression. If the expression has more than one real root, some starting points for the iterative algorithm will lead to one of the roots asymptotically, and other starting points will lead to another. The basins of attraction for the expression's roots are generally not simple&mdash;it is not simply that the points nearest one root all map there, giving a basin of attraction consisting of nearby points. The basins of attraction can be infinite in number and arbitrarily small. For example, for the function <math>f(x)=x^3-2x^2-11x+12</math>, the following initial conditions are in successive basins of attraction:
 
Equations or systems that are nonlinear can give rise to a richer variety of behavior than can linear systems. One example is Newton's method of iterating to a root of a nonlinear expression. If the expression has more than one real root, some starting points for the iterative algorithm will lead to one of the roots asymptotically, and other starting points will lead to another. The basins of attraction for the expression's roots are generally not simple&mdash;it is not simply that the points nearest one root all map there, giving a basin of attraction consisting of nearby points. The basins of attraction can be infinite in number and arbitrarily small. For example, for the function <math>f(x)=x^3-2x^2-11x+12</math>, the following initial conditions are in successive basins of attraction:
   −
与线性系统相比,非线性方程或系统可以产生更多种类的行为。一个例子是牛顿迭代非线性表达式根的方法。如果表达式有多个实根,则迭代算法的某些起始点会渐近地导致其中一个根,而其他起始点会导致另一个根。表达式根部的吸引盆地通常不是简单的---- 它不是简单地将最靠近一个根部的点全部映射到那里,形成一个由附近点组成的吸引盆地。吸引力的盆地可以是无限的,也可以是任意的小。例如,对于函数 f (x) = x ^ 3-2x ^ 2-11x + 12 </math > ,下面的初始条件是连续的吸引盆地:
+
与线性系统相比,非线性方程或系统可以产生更多种类的行为。一个例子是牛顿迭代非线性表达式根的方法。如果表达式有多个实根,则迭代算法的某些起始点会渐近地导致其中一个根,而其他起始点会导致另一个根。表达式根部的吸引盆地通常不是简单的---- 它不是简单地将最靠近一个根部的点全部映射到那里,形成一个由附近点组成的吸引盆地。吸引力的盆地可以是无限的,也可以是任意的小。例如,对于函数 <math>f(x)=x^3-2x^2-11x+12</math> ,下面的初始条件是连续的吸引池:
    
Likewise, a linear [[matrix difference equation]] in a dynamic [[coordinate vector|vector]] ''X'', of the homogeneous form <math>X_t=AX_{t-1}</math> in terms of [[square matrix]] ''A'' will have all elements of the dynamic vector diverge to infinity if the largest [[eigenvalue]] of ''A'' is greater than 1 in absolute value; there is no attractor and no basin of attraction. But if the largest eigenvalue is less than 1 in magnitude, all initial vectors will asymptotically converge to the zero vector, which is the attractor; the entire ''n''-dimensional space of potential initial vectors is the basin of attraction.
 
Likewise, a linear [[matrix difference equation]] in a dynamic [[coordinate vector|vector]] ''X'', of the homogeneous form <math>X_t=AX_{t-1}</math> in terms of [[square matrix]] ''A'' will have all elements of the dynamic vector diverge to infinity if the largest [[eigenvalue]] of ''A'' is greater than 1 in absolute value; there is no attractor and no basin of attraction. But if the largest eigenvalue is less than 1 in magnitude, all initial vectors will asymptotically converge to the zero vector, which is the attractor; the entire ''n''-dimensional space of potential initial vectors is the basin of attraction.
   −
 
+
同样地,在动态[[坐标向量|向量]''X''中的线性[[矩阵差分方程]]在[[平方矩阵]]''a'中的齐次形式<math>X|t=AX{t-1}</math>中,如果“a”的最大[[特征值]]在绝对值上大于1,则动态向量的所有元素将发散到无穷大;没有吸引子,也没有吸引池。但如果最大特征值小于1,则所有初始向量将渐近收敛于零向量,即吸引子;潜在初始向量的整个n维空间就是吸引池。
    
Basins of attraction in the complex plane for using Newton's method to solve x<sup>5</sup>&nbsp;−&nbsp;1&nbsp;=&nbsp;0. Points in like-colored regions map to the same root; darker means more iterations are needed to converge.
 
Basins of attraction in the complex plane for using Newton's method to solve x<sup>5</sup>&nbsp;−&nbsp;1&nbsp;=&nbsp;0. Points in like-colored regions map to the same root; darker means more iterations are needed to converge.
   −
用牛顿法求解 x < sup > 5 </sup >-1 = 0。相似颜色区域中的点映射到同一个根; 颜色较深意味着需要更多的迭代来收敛。
+
用牛顿法求解 x<sup>5</sup>&nbsp;−&nbsp;1&nbsp;=&nbsp;0。相似颜色区域中的点映射到同一个根; 颜色较深意味着需要更多的迭代来收敛。
    
Similar features apply to linear [[differential equation]]s. The scalar equation <math> dx/dt =ax</math> causes all initial values of ''x'' except zero to diverge to infinity if ''a'' > 0 but to converge to an attractor at the value 0 if ''a'' < 0, making the entire number line the basin of attraction for 0. And the matrix system <math>dX/dt=AX</math> gives divergence from all initial points except the vector of zeroes if any eigenvalue of the matrix ''A'' is positive; but if all the eigenvalues are negative the vector of zeroes is an attractor whose basin of attraction is the entire phase space.
 
Similar features apply to linear [[differential equation]]s. The scalar equation <math> dx/dt =ax</math> causes all initial values of ''x'' except zero to diverge to infinity if ''a'' > 0 but to converge to an attractor at the value 0 if ''a'' < 0, making the entire number line the basin of attraction for 0. And the matrix system <math>dX/dt=AX</math> gives divergence from all initial points except the vector of zeroes if any eigenvalue of the matrix ''A'' is positive; but if all the eigenvalues are negative the vector of zeroes is an attractor whose basin of attraction is the entire phase space.
   −
 
+
类似的特征也适用于线性[[微分方程]]s。标量方程<math>dx/dt=ax</math>会导致“x”的所有初始值(除了0)发散到无穷大,如果“a”<0,则收敛到值为0的吸引子,使整条数线成为0的吸引域。如果矩阵“A”的任何特征值为正,则矩阵系统的dX/dt=AX除了零向量外,会从所有初始点发散;但如果所有特征值都为负,则零点向量是一个吸引子,其吸引域是整个相空间。
    
2.35287527  converges to 4;
 
2.35287527  converges to 4;
第380行: 第380行:  
2.35287527汇聚为4;
 
2.35287527汇聚为4;
   −
===Nonlinear equation or system===
+
===Nonlinear equation or system非线性方程或系统===
    
2.35284172  converges to −3;
 
2.35284172  converges to −3;
   −
2.35284172  converges to −3;
+
2.35284172  收敛到 −3;
      第390行: 第390行:  
2.35283735  converges to 4;
 
2.35283735  converges to 4;
   −
2.35283735汇聚至4;
+
2.35283735收敛到4;
    
Equations or systems that are [[nonlinear system|nonlinear]] can give rise to a richer variety of behavior than can linear systems. One example is [[Newton's method]] of iterating to a root of a nonlinear expression. If the expression has more than one [[real number|real]] root, some starting points for the iterative algorithm will lead to one of the roots asymptotically, and other starting points will lead to another. The basins of attraction for the expression's roots are generally not simple&mdash;it is not simply that the points nearest one root all map there, giving a basin of attraction consisting of nearby points. The basins of attraction can be infinite in number and arbitrarily small. For example,<ref>Dence, Thomas, "Cubics, chaos and Newton's method", ''[[Mathematical Gazette]]'' 81, November 1997, 403–408.</ref> for the function <math>f(x)=x^3-2x^2-11x+12</math>, the following initial conditions are in successive basins of attraction:
 
Equations or systems that are [[nonlinear system|nonlinear]] can give rise to a richer variety of behavior than can linear systems. One example is [[Newton's method]] of iterating to a root of a nonlinear expression. If the expression has more than one [[real number|real]] root, some starting points for the iterative algorithm will lead to one of the roots asymptotically, and other starting points will lead to another. The basins of attraction for the expression's roots are generally not simple&mdash;it is not simply that the points nearest one root all map there, giving a basin of attraction consisting of nearby points. The basins of attraction can be infinite in number and arbitrarily small. For example,<ref>Dence, Thomas, "Cubics, chaos and Newton's method", ''[[Mathematical Gazette]]'' 81, November 1997, 403–408.</ref> for the function <math>f(x)=x^3-2x^2-11x+12</math>, the following initial conditions are in successive basins of attraction:
 +
 +
与线性系统相比,[[非线性系统|非线性]]的方程或系统可以产生更丰富的行为。一个例子是迭代到非线性表达式根的[[牛顿方法]]。如果表达式有多个[[实数|实]]根,则迭代算法的某些起始点将渐近地导致其中一个根,而其他起点将导致另一个根。表达式根的吸引域通常并不简单,最接近一个根的点都映射到那里,从而形成由附近点组成的吸引区。吸引的盆地可以是无限的,可以任意小。例如,<ref>dance,Thomas,“Cubics,chaos and Newton's method”,“[[mathematic Gazette]]”811997年11月,403–408。</ref>对于函数<math>f(x)=x^3-2x^2-11x+12</math>,以下初始条件在连续的吸引域中:
    
2.352836327  converges to −3;
 
2.352836327  converges to −3;
第406行: 第408行:  
[[File:newtroot 1 0 0 0 0 m1.png|thumb|Basins of attraction in the complex plane for using Newton's method to solve ''x''<sup>5</sup>&nbsp;−&nbsp;1&nbsp;=&nbsp;0. Points in like-colored regions map to the same root; darker means more iterations are needed to converge.]]
 
[[File:newtroot 1 0 0 0 0 m1.png|thumb|Basins of attraction in the complex plane for using Newton's method to solve ''x''<sup>5</sup>&nbsp;−&nbsp;1&nbsp;=&nbsp;0. Points in like-colored regions map to the same root; darker means more iterations are needed to converge.]]
   −
 
+
[[文件:newtroot 10 0 0 0 m1.png |拇指|复杂平面中的吸引盆地,用于使用牛顿法求解“x”<sup>5</sup>—1&nbsp;=0。相同颜色区域中的点映射到同一根;较暗表示需要更多迭代才能收敛。]]
    
Newton's method can also be applied to complex functions to find their roots. Each root has a basin of attraction in the complex plane; these basins can be mapped as in the image shown. As can be seen, the combined basin of attraction for a particular root can have many disconnected regions. For many complex functions, the boundaries of the basins of attraction are fractals.
 
Newton's method can also be applied to complex functions to find their roots. Each root has a basin of attraction in the complex plane; these basins can be mapped as in the image shown. As can be seen, the combined basin of attraction for a particular root can have many disconnected regions. For many complex functions, the boundaries of the basins of attraction are fractals.
第440行: 第442行:       −
== Partial differential equations ==
+
== Partial differential equations偏微分方程 ==
    
[[File:Chua-chaotic-hidden-attractor.jpg|thumb|
 
[[File:Chua-chaotic-hidden-attractor.jpg|thumb|
第447行: 第449行:     
[[Parabolic partial differential equation]]s may have finite-dimensional attractors.  The diffusive part of the equation damps higher frequencies and in some cases leads to a global attractor. The ''Ginzburg–Landau'', the ''Kuramoto–Sivashinsky'', and the two-dimensional, forced [[Navier–Stokes equation]]s are all known to have global attractors of finite dimension.
 
[[Parabolic partial differential equation]]s may have finite-dimensional attractors.  The diffusive part of the equation damps higher frequencies and in some cases leads to a global attractor. The ''Ginzburg–Landau'', the ''Kuramoto–Sivashinsky'', and the two-dimensional, forced [[Navier–Stokes equation]]s are all known to have global attractors of finite dimension.
 +
 +
[[抛物型偏微分方程]]可能具有有限维吸引子。方程的扩散部分会阻尼更高的频率,在某些情况下会导致全局吸引子。“金茨堡-兰道”、“库拉莫托-西瓦辛斯基”和二维受迫[[纳维-斯托克斯方程]]都具有有限维的全局吸引子。
    
Chaotic hidden attractor (green domain) in Chua's system.
 
Chaotic hidden attractor (green domain) in Chua's system.
第459行: 第463行:     
For the three-dimensional, incompressible Navier–Stokes equation with periodic [[boundary condition]]s, if it has a global attractor, then this attractor will be of finite dimensions.<ref>[[Geneviève Raugel]], Global Attractors in Partial Differential Equations, ''Handbook of Dynamical Systems'', Elsevier, 2002, pp. 885–982.</ref>
 
For the three-dimensional, incompressible Navier–Stokes equation with periodic [[boundary condition]]s, if it has a global attractor, then this attractor will be of finite dimensions.<ref>[[Geneviève Raugel]], Global Attractors in Partial Differential Equations, ''Handbook of Dynamical Systems'', Elsevier, 2002, pp. 885–982.</ref>
 +
对于具有周期[[边界条件]]s的三维不可压缩Navier–Stokes方程,如果它有一个全局吸引子,那么这个吸引子将是有限维的。<ref>[[Geneviève Raugel]], Global Attractors in Partial Differential Equations, ''Handbook of Dynamical Systems'', Elsevier, 2002, pp. 885–982.</ref>
    
]]
 
]]
第467行: 第472行:     
<!-- This should be uncommented once the <nowiki>{{Notability}}</nowiki> in [[hidden attractor]] is solved. See the talk page for more information.
 
<!-- This should be uncommented once the <nowiki>{{Notability}}</nowiki> in [[hidden attractor]] is solved. See the talk page for more information.
 +
<!--一旦解决了[[hidden attractor]]中的<nowiki>{Notability}}</nowiki>,就应该取消注释。更多信息请参见谈话页。
    
From a computational point of view, attractors can be naturally regarded as self-excited attractors or
 
From a computational point of view, attractors can be naturally regarded as self-excited attractors or
第472行: 第478行:  
从计算的角度来看,吸引子可以自然地看作自激吸引子或自激吸引子
 
从计算的角度来看,吸引子可以自然地看作自激吸引子或自激吸引子
   −
== Numerical localization (visualization) of attractors: self-excited and hidden attractors ==
+
== Numerical localization (visualization) of attractors: self-excited and hidden attractors 吸引子的数值局部化(可视化):自激吸引子和隐吸引子==
    
hidden attractors. Self-excited attractors can be localized numerically by standard computational procedures, in which after a transient sequence, a trajectory starting from a point on an unstable manifold in a small neighborhood of an unstable equilibrium reaches an attractor, such as the classical attractors in the Van der Pol, Belousov–Zhabotinsky, Lorenz, and many other dynamical systems.  In contrast, the basin of attraction of a hidden attractor does not contain neighborhoods of equilibria, so the hidden attractor cannot be localized by standard computational procedures.
 
hidden attractors. Self-excited attractors can be localized numerically by standard computational procedures, in which after a transient sequence, a trajectory starting from a point on an unstable manifold in a small neighborhood of an unstable equilibrium reaches an attractor, such as the classical attractors in the Van der Pol, Belousov–Zhabotinsky, Lorenz, and many other dynamical systems.  In contrast, the basin of attraction of a hidden attractor does not contain neighborhoods of equilibria, so the hidden attractor cannot be localized by standard computational procedures.
第487行: 第493行:     
Trajectories with initial data in a neighborhood of two saddle points (blue) tend (red arrow) to infinity or tend (black arrow) to stable zero equilibrium point (orange).
 
Trajectories with initial data in a neighborhood of two saddle points (blue) tend (red arrow) to infinity or tend (black arrow) to stable zero equilibrium point (orange).
 +
 +
[[Chua's circuit | Chua's system]]中的混沌[[隐藏吸引子]](绿域)。
 +
 +
初始数据位于两个鞍点附近(蓝色)的轨迹趋向于无穷大(红色箭头)或趋向于(黑色箭头)稳定的零平衡点(橙色)。
    
]]
 
]]
第495行: 第505行:     
''[[hidden attractor]]s''.<ref name="2011-PLA-Hidden-Chua-attractor">{{cite journal |author1=Leonov G.A. |author2=Vagaitsev V.I. |author3=Kuznetsov N.V. |
 
''[[hidden attractor]]s''.<ref name="2011-PLA-Hidden-Chua-attractor">{{cite journal |author1=Leonov G.A. |author2=Vagaitsev V.I. |author3=Kuznetsov N.V. |
 +
 +
从计算的角度来看,吸引子可以自然地看作是“自激吸引子”或
 +
 +
'[[隐藏吸引子]]s''<ref name="2011-PLA-Hidden-Chua-attractor">{{cite journal |author1=Leonov G.A. |author2=Vagaitsev V.I. |author3=Kuznetsov N.V. |
    
year = 2011 |
 
year = 2011 |
第612行: 第626行:  
</ref> Self-excited attractors can be localized numerically by standard computational procedures, in which after a transient sequence, a trajectory starting from a point on an unstable manifold in a small neighborhood of an unstable equilibrium reaches an attractor, such as the classical attractors in the [[Van der Pol oscillator|Van der Pol]], [[Belousov–Zhabotinsky reaction|Belousov–Zhabotinsky]], [[Lorenz attractor|Lorenz]], and many other dynamical systems.  In contrast, the basin of attraction of a [[hidden attractor]] does not contain neighborhoods of equilibria, so the [[hidden attractor]] cannot be localized by standard computational procedures.
 
</ref> Self-excited attractors can be localized numerically by standard computational procedures, in which after a transient sequence, a trajectory starting from a point on an unstable manifold in a small neighborhood of an unstable equilibrium reaches an attractor, such as the classical attractors in the [[Van der Pol oscillator|Van der Pol]], [[Belousov–Zhabotinsky reaction|Belousov–Zhabotinsky]], [[Lorenz attractor|Lorenz]], and many other dynamical systems.  In contrast, the basin of attraction of a [[hidden attractor]] does not contain neighborhoods of equilibria, so the [[hidden attractor]] cannot be localized by standard computational procedures.
    +
自激吸引子可以用标准的计算程序进行数值定域,在一个瞬态序列之后,从不稳定平衡小邻域中不稳定流形上的点开始的轨迹到达吸引子,例如[[Van der Pol振荡器| Van der Pol]]中的经典吸引子,[[Belousov–Zhabotinsky reaction | Belousov–Zhabotinsky]],[[Lorenz吸引子| Lorenz]],以及许多其他动力系统。相比之下,[[隐藏吸引子]]的吸引域不包含平衡邻域,因此[[隐藏吸引子]]不能用标准的计算程序进行局部化。
 
-->
 
-->
  
561

个编辑