更改

删除33字节 、 2020年12月5日 (六) 19:09
第48行: 第48行:  
对于上面给出的示例,事实证明红色应该选择概率为1的动作为4/7,动作2的可能性为3/7,蓝色应将概率0,4/7, 和4/7分配给A,B和C这三个动作。红色将赢得平均每场比赛的分数。
 
对于上面给出的示例,事实证明红色应该选择概率为1的动作为4/7,动作2的可能性为3/7,蓝色应将概率0,4/7, 和4/7分配给A,B和C这三个动作。红色将赢得平均每场比赛的分数。
   −
=== S解答===
+
=== 解答===
    
如果游戏矩阵不具备所有的正元素,只要在每个元素上加一个足够大的常数,使得它们都是正的。这个常数会增加游戏的价值,对均衡的混合策略没有影响。
 
如果游戏矩阵不具备所有的正元素,只要在每个元素上加一个足够大的常数,使得它们都是正的。这个常数会增加游戏的价值,对均衡的混合策略没有影响。
第75行: 第75行:  
通过求解给定线性规划的对偶问题,可以找到最小化博弈者的均衡混合策略。或者,也可以通过使用上述过程来求解修正的支付矩阵,即 {{mvar|M}}的转置和否定(添加一个常数使其为正),然后求解结果博弈。
 
通过求解给定线性规划的对偶问题,可以找到最小化博弈者的均衡混合策略。或者,也可以通过使用上述过程来求解修正的支付矩阵,即 {{mvar|M}}的转置和否定(添加一个常数使其为正),然后求解结果博弈。
   −
如果找到线性规划的所有解,它们将构成博弈的所有'''<font color="#ff8000"> 纳什均衡</font>'''。相反,任何线性程序都可以通过使用变量上述方程形式的变化,将其转换为两人零和博弈。所以,一般来说,这种游戏相当于线性程序。{{citation needed|date=October 2010}}
+
如果找到线性规划的所有解,它们将构成博弈的所有''' 纳什均'''。相反,任何线性程序都可以通过使用变量上述方程形式的变化,将其转换为两人零和博弈。所以,一般来说,这种游戏相当于线性程序。{{citation needed|date=October 2010}}
    
=== 通解 ===
 
=== 通解 ===
421

个编辑