更改

大小无更改 、 2020年12月22日 (二) 18:39
无编辑摘要
第175行: 第175行:  
引力三体问题也被通过广义相对论进行了研究。在物理上,相对论性的处理在引力场非常强的系统中变得非常必要,比如在黑洞的视界附近。然而,相对论性问题比牛顿力学困难得多,需要复杂的数值技术。即使是完整的两体问题(即任意质量比)在广义相对论中也没有严格的解析解。
 
引力三体问题也被通过广义相对论进行了研究。在物理上,相对论性的处理在引力场非常强的系统中变得非常必要,比如在黑洞的视界附近。然而,相对论性问题比牛顿力学困难得多,需要复杂的数值技术。即使是完整的两体问题(即任意质量比)在广义相对论中也没有严格的解析解。
   −
==n体问题==
+
==N体问题==
    
The three-body problem is a special case of the n-body problem, which describes how n objects will move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details). However, the Sundman and Wang series converge so slowly that they are useless for practical purposes;[27] therefore, it is currently necessary to approximate solutions by numerical analysis in the form of numerical integration or, for some cases, classical trigonometric series approximations (see n-body simulation). Atomic systems, e.g. atoms, ions, and molecules, can be treated in terms of the quantum n-body problem. Among classical physical systems, the n-body problem usually refers to a galaxy or to a cluster of galaxies; planetary systems, such as stars, planets, and their satellites, can also be treated as n-body systems. Some applications are conveniently treated by perturbation theory, in which the system is considered as a two-body problem plus additional forces causing deviations from a hypothetical unperturbed two-body trajectory.
 
The three-body problem is a special case of the n-body problem, which describes how n objects will move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details). However, the Sundman and Wang series converge so slowly that they are useless for practical purposes;[27] therefore, it is currently necessary to approximate solutions by numerical analysis in the form of numerical integration or, for some cases, classical trigonometric series approximations (see n-body simulation). Atomic systems, e.g. atoms, ions, and molecules, can be treated in terms of the quantum n-body problem. Among classical physical systems, the n-body problem usually refers to a galaxy or to a cluster of galaxies; planetary systems, such as stars, planets, and their satellites, can also be treated as n-body systems. Some applications are conveniently treated by perturbation theory, in which the system is considered as a two-body problem plus additional forces causing deviations from a hypothetical unperturbed two-body trajectory.
19

个编辑