| :<math>x_{t+1}=rx_t(1-x_t), \qquad 0 \leq x_t \leq 1, \qquad 0 \leq r \leq 4</math> | | :<math>x_{t+1}=rx_t(1-x_t), \qquad 0 \leq x_t \leq 1, \qquad 0 \leq r \leq 4</math> |
| exhibits periodicity for various values of the parameter ''r''. For ''r'' between 0 and 1, 0 is the sole periodic point, with period 1 (giving the sequence 0, 0, 0, ..., which [[attractor|attracts]] all orbits). For ''r'' between 1 and 3, the value 0 is still periodic but is not attracting, while the value {{nowrap|(''r'' − 1) / ''r''}} is an attracting periodic point of period 1. With ''r'' greater than 3 but less than 1 + {{radic|6}}, there are a pair of period-2 points which together form an attracting sequence, as well as the non-attracting period-1 points 0 and {{nowrap|(''r'' − 1) / ''r''}}. As the value of parameter ''r'' rises toward 4, there arise groups of periodic points with any positive integer for the period; for some values of ''r'' one of these repeating sequences is attracting while for others none of them are (with almost all orbits being chaotic). | | exhibits periodicity for various values of the parameter ''r''. For ''r'' between 0 and 1, 0 is the sole periodic point, with period 1 (giving the sequence 0, 0, 0, ..., which [[attractor|attracts]] all orbits). For ''r'' between 1 and 3, the value 0 is still periodic but is not attracting, while the value {{nowrap|(''r'' − 1) / ''r''}} is an attracting periodic point of period 1. With ''r'' greater than 3 but less than 1 + {{radic|6}}, there are a pair of period-2 points which together form an attracting sequence, as well as the non-attracting period-1 points 0 and {{nowrap|(''r'' − 1) / ''r''}}. As the value of parameter ''r'' rises toward 4, there arise groups of periodic points with any positive integer for the period; for some values of ''r'' one of these repeating sequences is attracting while for others none of them are (with almost all orbits being chaotic). |
− | 参数r的各种值呈现周期性。对于介于0到1之间的r,0是唯一的周期点,周期为1(给出了吸引所有轨道的序列0,0,0,... )。对于介于1到3之间的r,值0仍然是周期性的,但不是吸引点,而该值是周期1的吸引周期点。当r大于3但小于1 + 时,存在一对周期2的点,它们共同构成一个吸引序列,非吸引周期1点为0。当参数r的值上升到4时,会出现周期为正的一组周期点;对于 r 的某些值,这些重复序列中的一个被吸引,而对于其他值,则没有一个被吸引(几乎所有的轨道都是混乱的)。
| + | 参数<math>r</math>随着取值的不同,呈现周期性。对于介于0到1之间的<math>r</math>,0是唯一的周期点,周期为1(给出了吸引所有轨道的序列0,0,0,... )。对于介于1到3之间的<math>r</math>,值0仍然是周期性的,但不是吸引点,而该值是周期1的吸引周期点。当<math>r</math>大于3但小于1+时,存在一对周期2的点,它们共同构成一个吸引序列,非吸引周期1点为0。当参数<math>r</math>的值上升到4时,会出现周期为正的一组周期点;对于<math>r</math>的某些值,这些重复序列中的一个被吸引,而对于其他值,则没有一个被吸引(几乎所有的轨道都是混乱的)。 |