更改

删除6字节 、 2021年2月28日 (日) 20:27
无编辑摘要
第49行: 第49行:       −
假设一个网络具有度分布<math>P(k)</math>,通过选择一个节点(随机或非随机)跟随它的一个邻近点(假设至少有一个邻近点),那么该节点具有<math>k</math> 个邻近点的概率不是由<math>P(k)</math>.给出的。造成这一结果的原因在于,无论何时在异质网络中选择某个节点,它都更有可能通过跟随该节点的某个现有邻点到达枢纽节点。这些节点具有度<math>k</math>的真实概率是<math>q(k)</math>,它被称为该节点的'''超额度'''。在'''<font color="#ff8000">配置模型 Configuration Model</font>'''中,忽略节点之间的相关性,并假定每个节点以相同的概率连接到网络中的其他任何节点,余度分布表示为:
+
假设一个网络具有度分布<math>P(k)</math>,通过选择一个节点(随机或非随机)跟随它的一个邻近点(假设至少有一个邻近点),那么该节点具有<math>k</math> 个邻近点的概率不是由<math>P(k)</math>.给出的。造成这一结果的原因在于,无论何时在异质网络中选择某个节点,它都更有可能通过跟随该节点的某个现有邻点到达枢纽节点。这些节点具有度<math>k</math>的真实概率是<math>q(k)</math>,它被称为该节点的'''余度'''。在'''<font color="#ff8000">配置模型 Configuration Model</font>'''中,忽略节点之间的相关性,并假定每个节点以相同的概率连接到网络中的其他任何节点,余度分布表示为:
      第59行: 第59行:       −
这里<math>{\langle k \rangle}</math>是模型的平均度。由此可知,任意节点的邻居的平均度会大于该节点的平均度。推广到在社交网络络中,这意味着你的朋友平均比你拥有更多的朋友。这就是著名的'''<font color="#ff8000">朋友悖论 Friendship Paradox</font>'''。可以证明,如果一个网络的平均超额度大于1,那么它可以有一个巨大的联通分支:
+
这里<math>{\langle k \rangle}</math>是模型的平均度。由此可知,任意节点的邻居的平均度会大于该节点的平均度。推广到在社交网络络中,这意味着你的朋友平均比你拥有更多的朋友。这就是著名的'''<font color="#ff8000">朋友悖论 Friendship Paradox</font>'''。可以证明,如果一个网络的平均余度大于1,那么它可以有一个巨大的联通分支:
    
:<math>
 
:<math>