第1行: |
第1行: |
| + | {{#seo: |
| + | |keywords=结构因果模型,因果科学,因果之梯 |
| + | |description=结构因果模型,因果科学,因果之梯 |
| + | }} |
| + | |
| | | |
| [[File:Diagram of Dynamic Causal Modelling - Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging by Karl Friston.png|thumb|300px|比较两个竞争的因果模型(DCM,GCM)用于解释[[fMRI 图像]]<ref>{{cite journal | doi=10.1371/journal.pbio.1000033 | pmid=19226186 | pmc=2642881 | author=Karl Friston | title=Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging | journal=PLOS Biology| volume=7 | number=2 | pages=e1000033 | date=Feb 2009}}</ref>]] | | [[File:Diagram of Dynamic Causal Modelling - Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging by Karl Friston.png|thumb|300px|比较两个竞争的因果模型(DCM,GCM)用于解释[[fMRI 图像]]<ref>{{cite journal | doi=10.1371/journal.pbio.1000033 | pmid=19226186 | pmc=2642881 | author=Karl Friston | title=Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging | journal=PLOS Biology| volume=7 | number=2 | pages=e1000033 | date=Feb 2009}}</ref>]] |
第481行: |
第486行: |
| * {{Cite web|url=https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/|title=To Build Truly Intelligent Machines, Teach Them Cause and Effect|last=Hartnett|first=Kevin|website=Quanta Magazine|access-date=2019-09-19}} | | * {{Cite web|url=https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/|title=To Build Truly Intelligent Machines, Teach Them Cause and Effect|last=Hartnett|first=Kevin|website=Quanta Magazine|access-date=2019-09-19}} |
| *<ref>{{Citation|publisher=ICLR|title=Learning Representations using Causal Invariance|date=February 2020 |url=https://www.facebook.com/iclr.cc/videos/534780673594799|language=en|access-date=2020-02-10}}</ref> | | *<ref>{{Citation|publisher=ICLR|title=Learning Representations using Causal Invariance|date=February 2020 |url=https://www.facebook.com/iclr.cc/videos/534780673594799|language=en|access-date=2020-02-10}}</ref> |
| + | |
| + | == 编者推荐== |
| + | |
| + | |
| + | ===书籍推荐=== |
| + | [[File:统计因果推理入门.jpg|200px|thumb|right|《统计因果推理入门》封面]] |
| + | |
| + | *[[统计因果推理入门]] 对应英文[[Causal Inference in Statistics: A Primer]] |
| + | |
| + | 这本书非常适合初学者入门因果科学,这里面涉及到对结构因果模型的详细定义和阐述,非常清晰易懂。 |
| + | |
| + | |
| + | *[[Counterfactuals and Causal Inference: Methods and Principles for Social Research]] |
| + | |
| + | |
| + | |
| + | ===课程推荐=== |
| + | *[https://campus.swarma.org/course/1937 如何用信息视角理解现代因果模型框架?] |
| + | ::这个视频内容来自[[集智俱乐部读书会]]-因果科学与Causal AI读书会第一季内容的分享,这个视频为大家串讲因果推理的相关论文,着眼与因果研究的源头,简单介绍哲学中的因果思考。其次重点是用因果之梯(她的信息视角--回答因果问题需要相应的信息)和一个例子,来理解现代因果建模框架;最后梳理因果推理和 AI 领域的融合,以及Causal AI 的强人工智能之路。 |
| + | |
| | | |
| {{DEFAULTSORT:Causal Model}} | | {{DEFAULTSORT:Causal Model}} |