更改

添加4,286字节 、 2021年6月11日 (五) 22:30
第46行: 第46行:     
为了保证每个处理组的相似性,尝试了“最小化”方法,这比分层内的随机排列块更直接。在最小化方法中,根据每个处理组中的样本总和将每个层中的样本分配到处理组中,这使得受试者数量在组间保持平衡。<ref name=":0" /> 如果多个治疗组的总和相同,则将进行简单的随机化以分配治疗。在实践中,最小化方法需要根据预后因素(prognostic factors)跟踪治疗分配的每日记录,这可以通过使用一组索引卡进行记录来有效完成。最小化方法有效地避免了组间不平衡,但比块随机化涉及的随机过程更少,因为随机过程仅在治疗的总人数相同时进行。一个可行的解决方案是应用额外的随机列表,这使得具有较小边际总数的总和的治疗组具有更高的机会(例如 ¾),而其他治疗具有较低的机会(例如 ¼)。<ref name=":1">{{Cite journal|last=Pocock|first=S. J.|date=March 1979|title=Allocation of Patients to Treatment in Clinical Trials|journal=Biometrics|volume=35|issue=1|pages=183–197|doi=10.2307/2529944|jstor=2529944|pmid=497334|issn=0006-341X}}</ref>
 
为了保证每个处理组的相似性,尝试了“最小化”方法,这比分层内的随机排列块更直接。在最小化方法中,根据每个处理组中的样本总和将每个层中的样本分配到处理组中,这使得受试者数量在组间保持平衡。<ref name=":0" /> 如果多个治疗组的总和相同,则将进行简单的随机化以分配治疗。在实践中,最小化方法需要根据预后因素(prognostic factors)跟踪治疗分配的每日记录,这可以通过使用一组索引卡进行记录来有效完成。最小化方法有效地避免了组间不平衡,但比块随机化涉及的随机过程更少,因为随机过程仅在治疗的总人数相同时进行。一个可行的解决方案是应用额外的随机列表,这使得具有较小边际总数的总和的治疗组具有更高的机会(例如 ¾),而其他治疗具有较低的机会(例如 ¼)。<ref name=":1">{{Cite journal|last=Pocock|first=S. J.|date=March 1979|title=Allocation of Patients to Treatment in Clinical Trials|journal=Biometrics|volume=35|issue=1|pages=183–197|doi=10.2307/2529944|jstor=2529944|pmid=497334|issn=0006-341X}}</ref>
 +
      第52行: 第53行:  
为了保证每个处理组之间的相似性,尝试了“最小化”方法,这种方法比层内随机置乱更直接。在最小化方法中,根据每个处理组的样本总和,将每个地层的样本分配给处理组,使处理组的受试者人数保持平衡。
 
为了保证每个处理组之间的相似性,尝试了“最小化”方法,这种方法比层内随机置乱更直接。在最小化方法中,根据每个处理组的样本总和,将每个地层的样本分配给处理组,使处理组的受试者人数保持平衡。
   −
为了避免重要特征样本分配不平衡的问题,实验中常采用分块随机化的方法,采样规模较大。在某些严格要求随机化的领域,例如临床试验,当没有导体的盲法和块大小有限时,分配是可以预测的。随着地层数量的增加和样本容量的限制,地层中的块体随机化可能导致地层之间样本的不平衡,例如,有可能找不到符合特定地层特征的样本。
+
为了避免重要特征样
 +
==应用 Application==
 +
 
 +
[[File:Confounding_factors_are_important_to_consider_in_clinical_trials.png|thumb|219x219px|混杂因素在临床试验中很重要]]
 +
 
 +
Stratified random sampling is useful and productive in situations requiring different [[weighting]]s on specific strata. In this way, the researchers can manipulate the selection mechanisms from each strata to amplify or minimize the desired characteristics in the survey result.<ref>{{Cite web|url=https://www.thoughtco.com/stratified-sampling-3026731|title=Understanding Stratified Samples and How to Make Them|last=Crossman|first=Ashley|date=Jan 27, 2020|website=ThoughtCo|language=en|access-date=2020-04-07}}</ref>
 +
分层随机试验在需要对特定层进行不同权重的情况下非常有用且富有成效。 通过这种方式,研究人员可以操纵每个层次的选择机制,以放大或最小化调查结果中所需的特征。<ref>{{Cite web|url=https://www.thoughtco.com/stratified-sampling-3026731|title=Understanding Stratified Samples and How to Make Them|last=Crossman|first=Ashley|date=Jan 27, 2020|website=ThoughtCo|language=en|access-date=2020-04-07}}</ref>
 +
 
 +
 
 +
Stratified randomization is helpful when researchers intend to seek for [[Association (statistics)|associations]] between two or more strata, as simple random sampling causes a larger chance of unequal representation of target groups. It is also useful when the researchers wish to eliminate [[Confounding|confounders]] in [[Observational study|observational studies]] as stratified random sampling allows the adjustments of [[covariance]]s and the [[P-value|''p''-values]] for more accurate results.<ref>{{Cite book|last=Hennekens, Charles H.|title=Epidemiology in medicine|date=1987|publisher=Little, Brown|others=Buring, Julie E., Mayrent, Sherry L.|isbn=0-316-35636-0|edition=1st|location=Boston, Massachusetts|oclc=16890223}}</ref>
 +
 
 +
当研究人员打算寻找两个或多个层次之间的关联时,分层随机化很有帮助,因为简单的随机抽样会导致更大的可能出现目标群体的不平等代表性。当研究人员希望消除观察性研究中的'''<font color="#ff8000"> 混杂因素 Confounder </font>'''时,它也很有用,因为分层随机试验允许调整'''<font color="#ff8000"> 协方差 Covariances </font>'''和 '''<font color="#ff8000"> p 值 p-values </font>'''以获得更准确的结果。 <ref>{{Cite book|last=Hennekens, Charles H.|title=Epidemiology in medicine|date=1987|publisher=Little, Brown|others=Buring, Julie E., Mayrent, Sherry L.|isbn=0-316-35636-0|edition=1st|location=Boston, Massachusetts|oclc=16890223}}</ref>
 +
 
 +
There is also a higher level of [[Accuracy and precision|statistical accuracy]] for stratified random sampling compared with simple random sampling, due to the high [[relevance]] of elements chosen to represent the population.<ref name=":5" /> The differences within the strata is much less compared to the one between strata. Hence, as the between-sample differences are minimized, the [[standard deviation]] will be consequently tightened, resulting in higher degree of accuracy and small error in the final results. This effectively reduces the [[Sample size determination|sample size]] needed and increases [[Cost-effectiveness analysis|cost-effectiveness]] of sampling when research funding is tight.
 +
 
 +
与简单随机抽样相比,分层随机抽样的统计准确度也更高,因为选择代表总体的元素具有高度相关性。<ref name=":5" />与分层之间的差异相比,分层内的差异要小得多。因此,随着样本间差异的最小化,'''<font color="#ff8000"> 标准差 Standard deviation </font>'''也会随之收紧,从而导致最终结果的准确性更高,误差更小。当研究资金紧张时,这有效地减少了所需的样本量并提高了抽样的'''<font color="#ff8000"> 成本效益 Cost-effectiveness </font>'''。
 +
 
 +
In real life, stratified random sampling can be applied to results of election polling, investigations into income disparities among social groups, or measurements of education opportunities across nations.<ref name=":3" />
 +
 
 +
在现实生活中,分层随机试验可应用于选举投票结果、社会群体收入差距调查或各国教育机会的衡量。 <ref name=":3" />
 +
本分配不平衡的问题,实验中常采用分块随机化的方法,采样规模较大。在某些严格要求随机化的领域,例如临床试验,当没有导体的盲法和块大小有限时,分配是可以预测的。随着地层数量的增加和样本容量的限制,地层中的块体随机化可能导致地层之间样本的不平衡,例如,有可能找不到符合特定地层特征的样本。
    
Stratified random sampling is useful and productive in situations requiring different weightings on specific strata. In this way, the researchers can manipulate the selection mechanisms from each strata to amplify or minimize the desired characteristics in the survey result.
 
Stratified random sampling is useful and productive in situations requiring different weightings on specific strata. In this way, the researchers can manipulate the selection mechanisms from each strata to amplify or minimize the desired characteristics in the survey result.
387

个编辑