{{Citation|last1=Glass|first1=Aenne|title=Potential Advantages and Disadvantages of Stratification in Methods of Randomization|date=2014|work=Springer Proceedings in Mathematics & Statistics|pages=239–246|publisher=Springer New York|isbn=978-1-4939-2103-4|last2=Kundt|first2=Guenther|doi=10.1007/978-1-4939-2104-1_23}}</ref>
−
# The subgroup size is taken to be of the same importance if the data available cannot represent overall subgroup population. In some applications, subgroup size is decided with reference to the amount of data available instead of scaling sample sizes to subgroup size, which would introduce bias in the effects of factors. In some cases that data needs to be stratified by variances, subgroup variances differ significantly, making each subgroup sampling size proportional to the overall subgroup population cannot be guaranteed.<ref name=":2">
−
{{Citation|last1=Glass|first1=Aenne|title=Potential Advantages and Disadvantages of Stratification in Methods of Randomization|date=2014|work=Springer Proceedings in Mathematics & Statistics|pages=239–246|publisher=Springer New York|isbn=978-1-4939-2103-4|last2=Kundt|first2=Guenther|doi=10.1007/978-1-4939-2104-1_23}}</ref>
+
−
# Stratified sampling can not be applied if the population cannot be completely assigned into strata, which would result in sample sizes proportional to sample available instead of overall subgroup population.<ref name=":0" />