更改

添加24字节 、 2021年7月18日 (日) 20:14
更新框架
第9行: 第9行:  
而Do演算是一个具有完备性的推演系统,可以处理所有可识别的模型,当然也就包括了右侧图中这个例子。同时,利用Do演算还有一系列的计算机算法,可以自动、高速地去判断一个模型的可识别性,并在可识别的模型中将包含Do算子的概率分布表达式转换为仅包含观测变量的概率分布表达式。
 
而Do演算是一个具有完备性的推演系统,可以处理所有可识别的模型,当然也就包括了右侧图中这个例子。同时,利用Do演算还有一系列的计算机算法,可以自动、高速地去判断一个模型的可识别性,并在可识别的模型中将包含Do算子的概率分布表达式转换为仅包含观测变量的概率分布表达式。
   −
=== Do演算的规则集 ===
+
=== Do演算规则集 ===
    
在以下规则的表述中,使用符号<math>G_{\overline{X}}</math>表示删除有向图<math>G</math>中所有指向结点<math>X</math>的边后得到的子图,使用符号<math>G_{\overline{X}\underline{Z}}</math>表示删除有向图<math>G</math>中所有指向结点<math>X</math>的边和从结点<math>Z</math>指出的边后得到的子图。
 
在以下规则的表述中,使用符号<math>G_{\overline{X}}</math>表示删除有向图<math>G</math>中所有指向结点<math>X</math>的边后得到的子图,使用符号<math>G_{\overline{X}\underline{Z}}</math>表示删除有向图<math>G</math>中所有指向结点<math>X</math>的边和从结点<math>Z</math>指出的边后得到的子图。
第40行: 第40行:  
要证明上述定理的正确性,需要分别证明Do演算的可靠性(Soundness)和充分性(Sufficiency)。其中可靠性的证明由Judea Pearl于1995年给出<ref name="pearl:95">{{citation | last = Pearl | first = Judea | doi = 10.1093/biomet/82.4.669 | issue = 4 | journal = Biometrika | pages = 669–710 | title = Causal diagrams for empirical research | volume = 82 | year = 1995| url = https://escholarship.org/uc/item/6gv9n38c }}.</ref>,充分性的证明由Yimin Huang和Marco Valtorta于2006年给出<ref name="huang:06">{{cite journal |last1=Huang |first1=Yimin |last2=Valtorta |first2=Marco |date=2006 |title=Pearl's Calculus of Intervention is Complete |url= |journal=Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence |pages=217–224}}</ref>。
 
要证明上述定理的正确性,需要分别证明Do演算的可靠性(Soundness)和充分性(Sufficiency)。其中可靠性的证明由Judea Pearl于1995年给出<ref name="pearl:95">{{citation | last = Pearl | first = Judea | doi = 10.1093/biomet/82.4.669 | issue = 4 | journal = Biometrika | pages = 669–710 | title = Causal diagrams for empirical research | volume = 82 | year = 1995| url = https://escholarship.org/uc/item/6gv9n38c }}.</ref>,充分性的证明由Yimin Huang和Marco Valtorta于2006年给出<ref name="huang:06">{{cite journal |last1=Huang |first1=Yimin |last2=Valtorta |first2=Marco |date=2006 |title=Pearl's Calculus of Intervention is Complete |url= |journal=Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence |pages=217–224}}</ref>。
   −
=== Do演算的应用 ===
+
=== 应用案例 ===
    
==== 应用案例1 ====
 
==== 应用案例1 ====
第54行: 第54行:  
* 第七步:(使用规则三)<math>\Sigma_{s'}\Sigma_t P(c \mid t,s')P(s' \mid do(t))P(t \mid s) = \Sigma_{s'}\Sigma_t P(c \mid t,s')P(s')P(t \mid s)</math>
 
* 第七步:(使用规则三)<math>\Sigma_{s'}\Sigma_t P(c \mid t,s')P(s' \mid do(t))P(t \mid s) = \Sigma_{s'}\Sigma_t P(c \mid t,s')P(s')P(t \mid s)</math>
   −
=== Do演算的相关算法 ===
+
=== 相关算法 ===
    
==== 算法一 ====
 
==== 算法一 ====
 
算法1
 
算法1
 +
 +
=== 代码实现 ===
 +
 +
软件/代码信息
58

个编辑