更改

删除884字节 、 2021年8月3日 (二) 20:12
无编辑摘要
第19行: 第19行:  
新陈代谢的化学反应被组织成代谢途径,在代谢途径中,一种化学物质通过一系列步骤转化为另一种化学物质,每一步都由特定的[[酶]]来推动。酶对新陈代谢至关重要,因为它们通过将生物体与释放能量的自发反应耦合,使生物体能够驱动需要能量的理想反应,而这些反应本身不会发生。酶起催化剂的作用——它们使反应进行得更快——它们还可以调节代谢反应的速率,例如对细胞环境的变化或其他细胞发出的信号作出反应。
 
新陈代谢的化学反应被组织成代谢途径,在代谢途径中,一种化学物质通过一系列步骤转化为另一种化学物质,每一步都由特定的[[酶]]来推动。酶对新陈代谢至关重要,因为它们通过将生物体与释放能量的自发反应耦合,使生物体能够驱动需要能量的理想反应,而这些反应本身不会发生。酶起催化剂的作用——它们使反应进行得更快——它们还可以调节代谢反应的速率,例如对细胞环境的变化或其他细胞发出的信号作出反应。
   −
特定生物体的新陈代谢系统决定了哪些物质有营养,哪些有毒。例如,一些[[原核生物]]利用硫化氢作为营养物质,然而这种气体对动物是有毒的<ref name="Physiology1">{{cite book |author=Friedrich C |title=Physiology and genetics of sulfur-oxidizing bacteria |journal=Adv Microb Physiol |volume=39 |issue= |pages=235–89 |year=1998 |pmid=9328649 |doi=10.1016/S0065-2911(08)60018-1 |series=Advances in Microbial Physiology |isbn=978-0-12-027739-1}}</ref>。生物体的[[基础代谢率]]是所有这些化学反应所消耗能量的量度。
+
特定生物体的新陈代谢系统决定了哪些物质有营养,哪些有毒。例如,一些[[原核生物]]利用硫化氢作为营养物质,然而这种气体对动物是有毒的<ref name="Physiology1">{{cite book |author=Friedrich C |title=Physiology and genetics of sulfur-oxidizing bacteria |journal=Adv Microb Physiol |volume=39 |issue= |pages=235–89 |year=1998 |series=Advances in Microbial Physiology |isbn=978-0-12-027739-1}}</ref>。生物体的[[基础代谢率]]是所有这些化学反应所消耗能量的量度。
   −
新陈代谢的一个显著特征是,不同物种之间的基本新陈代谢途径具有相似性<ref>{{cite journal | vauthors = Pace NR | title = The universal nature of biochemistry | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 98 | issue = 3 | pages = 805–8 | date = January 2001 | pmid = 11158550 | pmc = 33372 | doi = 10.1073/pnas.98.3.805 | bibcode = 2001PNAS...98..805P }}</ref>。例如,作为[[三羧酸循环]]中的中间体,最著名的一组羧酸存在于所有已知的生物体中,它们在单细胞细菌[[大肠杆菌]]和巨大的多细胞生物(如大象)中都能被找到<ref name=SmithE>{{cite journal | vauthors = Smith E, Morowitz HJ | title = Universality in intermediary metabolism | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 36 | pages = 13168–73 | date = September 2004 | pmid = 15340153 | pmc = 516543 | doi = 10.1073/pnas.0404922101 | bibcode = 2004PNAS..10113168S }}</ref>。 这些代谢途径的相似性很可能是由于它们在演化史的早期出现,然后又因为它们的功效而保留下来<ref name=Ebenhoh>{{cite journal | vauthors = Ebenhöh O, Heinrich R | title = Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems | journal = Bulletin of Mathematical Biology | volume = 63 | issue = 1 | pages = 21–55 | date = January 2001 | pmid = 11146883 | doi = 10.1006/bulm.2000.0197 | s2cid = 44260374 }}</ref><ref name=Cascante>{{cite journal | vauthors = Meléndez-Hevia E, Waddell TG, Cascante M | title = The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution | journal = Journal of Molecular Evolution | volume = 43 | issue = 3 | pages = 293–303 | date = September 1996 | pmid = 8703096 | doi = 10.1007/BF02338838 | s2cid = 19107073 | bibcode = 1996JMolE..43..293M }}</ref>。癌细胞的代谢也不同于正常细胞的代谢,这些差异可以用来寻找癌细胞治疗的靶点<ref name="Vander_Heiden_2017">{{cite journal | vauthors = Vander Heiden MG, DeBerardinis RJ | title = Understanding the Intersections between Metabolism and Cancer Biology | journal = Cell | volume = 168 | issue = 4 | pages = 657–669 | date = February 2017 | pmid = 28187287 | pmc = 5329766 | doi = 10.1016/j.cell.2016.12.039 }}</ref>。
+
新陈代谢的一个显著特征是,不同物种之间的基本新陈代谢途径具有相似性<ref>{{cite journal | vauthors = Pace NR | title = The universal nature of biochemistry | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 98 | issue = 3 | pages = 805–8 | date = January 2001 | pmid = 11158550 | pmc = 33372 | doi = 10.1073/pnas.98.3.805 | bibcode = 2001PNAS...98..805P }}</ref>。例如,作为[[三羧酸循环]]中的中间体,最著名的一组羧酸存在于所有已知的生物体中,它们在单细胞细菌[[大肠杆菌]]和巨大的多细胞生物(如大象)中都能被找到<ref name=SmithE>{{cite journal | vauthors = Smith E, Morowitz HJ | title = Universality in intermediary metabolism | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 36 | pages = 13168–73 | date = September 2004 | pmid = 15340153 | pmc = 516543 | doi = 10.1073/pnas.0404922101 | bibcode = 2004PNAS..10113168S }}</ref>。 这些代谢途径的相似性很可能是由于它们在演化史的早期出现,然后又因为它们的功效而保留下来<ref name=Ebenhoh>{{cite journal | vauthors = Ebenhöh O, Heinrich R | title = Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems | journal = Bulletin of Mathematical Biology | volume = 63 | issue = 1 | pages = 21–55 | date = January 2001 | pmid = 11146883 | doi = 10.1006/bulm.2000.0197 }}</ref><ref name=Cascante>{{cite journal | vauthors = Meléndez-Hevia E, Waddell TG, Cascante M | title = The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution | journal = Journal of Molecular Evolution | volume = 43 | issue = 3 | pages = 293–303 | date = September 1996 | pmid = 8703096 | doi = 10.1007/BF02338838 | bibcode = 1996JMolE..43..293M }}</ref>。癌细胞的代谢也不同于正常细胞的代谢,这些差异可以用来寻找癌细胞治疗的靶点<ref name="Vander_Heiden_2017">{{cite journal | vauthors = Vander Heiden MG, DeBerardinis RJ | title = Understanding the Intersections between Metabolism and Cancer Biology | journal = Cell | volume = 168 | issue = 4 | pages = 657–669 | date = February 2017 | pmid = 28187287 | pmc = 5329766 | doi = 10.1016/j.cell.2016.12.039 }}</ref>。
 
== 关键的生物化学成分 ==
 
== 关键的生物化学成分 ==
 
更多信息:生物分子,细胞(生物学)和生物化学
 
更多信息:生物分子,细胞(生物学)和生物化学
第29行: 第29行:  
[[File:Human Metabolism - Pathways.jpg|thumb|这张图表描绘了人体新陈代谢的一系列途径。]]
 
[[File:Human Metabolism - Pathways.jpg|thumb|这张图表描绘了人体新陈代谢的一系列途径。]]
   −
构成动物、植物和微生物的大部分结构由四种基本分子组成: 氨基酸、糖类化合物、核酸和脂类(通常称为脂肪)。由于这些分子对生命至关重要,新陈代谢反应要么专注于在构建细胞和组织的过程中制造这些分子,要么将这些分子作为能量来源并将其消化分解。这些生化物质可以结合在一起形成DNA和蛋白质之类的聚合物,它们都是生命必不可少的[[大分子聚合物]]<ref>{{cite journal|last=Cooper|first=Geoffrey M.| name-list-style = vanc |date=2000|title=The Molecular Composition of Cells|url=https://www.ncbi.nlm.nih.gov/books/NBK9879/|journal=The Cell: A Molecular Approach. 2nd Edition|language=en}}</ref>。<center>
+
构成动物、植物和微生物的大部分结构由四种基本分子组成: 氨基酸、糖类化合物、核酸和脂类(通常称为脂肪)。由于这些分子对生命至关重要,新陈代谢反应要么专注于在构建细胞和组织的过程中制造这些分子,要么将这些分子作为能量来源并将其消化分解。这些生化物质可以结合在一起形成DNA和蛋白质之类的聚合物,它们都是生命必不可少的[[大分子聚合物]]<ref>{{cite journal|last=Cooper|first=Geoffrey M.|date=2000|title=The Molecular Composition of Cells|url=https://www.ncbi.nlm.nih.gov/books/NBK9879/|journal=The Cell: A Molecular Approach. 2nd Edition|language=en}}</ref>。<center>
 
{| class="wikitable “wikitable”" style="“margin-left:" auto; margin-right: auto;”
 
{| class="wikitable “wikitable”" style="“margin-left:" auto; margin-right: auto;”
 
|-
 
|-
第43行: 第43行:  
</center>
 
</center>
 
===氨基酸和蛋白质===
 
===氨基酸和蛋白质===
蛋白质是由氨基酸组成的线性链,它们通过[[肽键]]连接在一起。许多蛋白质是在新陈代谢中催化化学反应的酶。其他蛋白质具有结构或机械功能,例如那些形成[[细胞骨架]]的蛋白质(细胞骨架是维持细胞形状的支架系统)<ref>{{cite journal | vauthors = Michie KA, Löwe J | title = Dynamic filaments of the bacterial cytoskeleton | journal = Annual Review of Biochemistry | volume = 75 | issue =  | pages = 467–92 | year = 2006 | pmid = 16756499 | doi = 10.1146/annurev.biochem.75.103004.142452 | s2cid = 4550126 }}</ref> 。蛋白质在[[细胞信号传导]]、[[免疫反应]]、[[细胞粘附]]、主动跨膜转运和[[细胞周期]]中也很重要<ref name="Nelson">{{cite book | last1 = Nelson | first1 = David L. | first2 = Michael M. | last2 = Cox | name-list-style = vanc | title = Lehninger Principles of Biochemistry | publisher = W. H. Freeman and company | year = 2005 | location = New York | page = [https://archive.org/details/lehningerprincip00lehn_0/page/841 841] | isbn = 978-0-7167-4339-2 | url-access = registration | url = https://archive.org/details/lehningerprincip00lehn_0/page/841 }}</ref> 。氨基酸还通过提供碳源进入细胞三羧酸循环,促进细胞的能量代谢,<ref>{{cite journal | vauthors = Kelleher JK, Bryan BM, Mallet RT, Holleran AL, Murphy AN, Fiskum G | title = Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios | journal = The Biochemical Journal | volume = 246 | issue = 3 | pages = 633–9 | date = September 1987 | pmid = 3120698 | pmc = 1148327 | doi = 10.1042/bj2460633 }}</ref>尤其是在[[葡萄糖]]等主要能量来源匮乏或细胞发生代谢应激时<ref>{{cite journal | vauthors = Hothersall JS, Ahmed A | title = Metabolic fate of the increased yeast amino Acid uptake subsequent to catabolite derepression | journal = Journal of Amino Acids | volume = 2013 | pages = 461901 | year = 2013 | pmid = 23431419 | pmc = 3575661 | doi = 10.1155/2013/461901 }}</ref>。
+
蛋白质是由氨基酸组成的线性链,它们通过[[肽键]]连接在一起。许多蛋白质是在新陈代谢中催化化学反应的酶。其他蛋白质具有结构或机械功能,例如那些形成[[细胞骨架]]的蛋白质(细胞骨架是维持细胞形状的支架系统)<ref>{{cite journal | vauthors = Michie KA, Löwe J | title = Dynamic filaments of the bacterial cytoskeleton | journal = Annual Review of Biochemistry | volume = 75 | issue =  | pages = 467–92 | year = 2006 | pmid = 16756499 | doi = 10.1146/annurev.biochem.75.103004.142452 }}</ref> 。蛋白质在[[细胞信号传导]]、[[免疫反应]]、[[细胞粘附]]、主动跨膜转运和[[细胞周期]]中也很重要<ref name="Nelson">{{cite book | last1 = Nelson | first1 = David L. | first2 = Michael M. | last2 = Cox | name-list-style = vanc | title = Lehninger Principles of Biochemistry | publisher = W. H. Freeman and company | year = 2005 | location = New York | page = [https://archive.org/details/lehningerprincip00lehn_0/page/841 841] | isbn = 978-0-7167-4339-2 | url-access = registration | url = https://archive.org/details/lehningerprincip00lehn_0/page/841 }}</ref> 。氨基酸还通过提供碳源进入细胞三羧酸循环,促进细胞的能量代谢,<ref>{{cite journal | vauthors = Kelleher JK, Bryan BM, Mallet RT, Holleran AL, Murphy AN, Fiskum G | title = Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios | journal = The Biochemical Journal | volume = 246 | issue = 3 | pages = 633–9 | date = September 1987 | pmid = 3120698 | pmc = 1148327 | doi = 10.1042/bj2460633 }}</ref>尤其是在[[葡萄糖]]等主要能量来源匮乏或细胞发生代谢应激时<ref>{{cite journal | vauthors = Hothersall JS, Ahmed A | title = Metabolic fate of the increased yeast amino Acid uptake subsequent to catabolite derepression | journal = Journal of Amino Acids | volume = 2013 | pages = 461901 | year = 2013 | pmid = 23431419 | pmc = 3575661 | doi = 10.1155/2013/461901 }}</ref>。
    
===脂类 ===
 
===脂类 ===
脂类是最多样化的生物化学物质。它们的主要结构用途是作为[[生物膜]]内部和外部的一部分,如[[细胞膜]],或作为能量来源<ref name="Nelson" />。脂类通常被定义为疏水性或两亲性的生物分子,但会溶解在有机溶剂中,如酒精、苯或氯仿。<ref>{{cite journal | vauthors = Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA | display-authors = 6 | title = A comprehensive classification system for lipids | journal = Journal of Lipid Research | volume = 46 | issue = 5 | pages = 839–61 | date = May 2005 | pmid = 15722563 | doi = 10.1194/jlr.E400004-JLR200 | doi-access = free }}</ref>脂肪是一大类含有脂肪酸和甘油的化合物,一个甘油分子连接到三个脂肪酸酯即称为三酰甘油酯。<ref>{{cite web|title=Lipid nomenclature Lip-1 & Lip-2|url=https://www.qmul.ac.uk/sbcs/iupac/lipid/lip1n2.html#p11|access-date=2020-06-06|website=www.qmul.ac.uk}}</ref>这种基本结构存在一些变异,包括主骨(如鞘磷脂中到鞘氨醇)和亲水基(如磷脂中的磷酸盐)。[[类固醇]],如[[固醇]],是另一类主要的脂类<ref>{{cite book|edition=8|title=Biochemistry|location=New York|isbn=978-1-4641-2610-9|oclc=913469736 | vauthors = Berg JM, Tymoczko JL, Gatto Jr GJ, Stryer L |date=8 April 2015|publisher=W. H. Freeman|pages=362}}</ref>。
+
脂类是最多样化的生物化学物质。它们的主要结构用途是作为[[生物膜]]内部和外部的一部分,如[[细胞膜]],或作为能量来源<ref name="Nelson" />。脂类通常被定义为疏水性或两亲性的生物分子,但会溶解在有机溶剂中,如酒精、苯或氯仿。<ref>{{cite journal | vauthors = Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA | display-authors = 6 | title = A comprehensive classification system for lipids | journal = Journal of Lipid Research | volume = 46 | issue = 5 | pages = 839–61 | date = May 2005 | pmid = 15722563 | doi = 10.1194/jlr.E400004-JLR200 | doi-access = free }}</ref>脂肪是一大类含有脂肪酸和甘油的化合物,一个甘油分子连接到三个脂肪酸酯即称为三酰甘油酯。<ref>{{cite web|title=Lipid nomenclature Lip-1 & Lip-2|url=https://www.qmul.ac.uk/sbcs/iupac/lipid/lip1n2.html#p11|access-date=2020-06-06|website=www.qmul.ac.uk}}</ref>这种基本结构存在一些变异,包括主骨(如鞘磷脂中到鞘氨醇)和亲水基(如磷脂中的磷酸盐)。[[类固醇]],如[[固醇]],是另一类主要的脂类<ref>{{cite book|edition=8|title=Biochemistry|location=New York|isbn=978-1-4641-2610-9 | vauthors = Berg JM, Tymoczko JL, Gatto Jr GJ, Stryer L |date=8 April 2015|publisher=W. H. Freeman|pages=362}}</ref>。
 
===碳水化合物===
 
===碳水化合物===
    
[[File:Glucose Fisher to Haworth.gif|thumb|upright=1.15|right|alt=The straight chain form consists of four C H O H groups linked in a row, capped at the ends by an aldehyde group C O H and a methanol group C H 2 O H.  To form the ring, the aldehyde group combines with the O H group of the next-to-last carbon at the other end, just before the methanol group.|葡萄糖可以以直链和环的形式存在。]]
 
[[File:Glucose Fisher to Haworth.gif|thumb|upright=1.15|right|alt=The straight chain form consists of four C H O H groups linked in a row, capped at the ends by an aldehyde group C O H and a methanol group C H 2 O H.  To form the ring, the aldehyde group combines with the O H group of the next-to-last carbon at the other end, just before the methanol group.|葡萄糖可以以直链和环的形式存在。]]
   −
碳水化合物是醛或酮,带有许多羟基,能以直链或环的形式存在。碳水化合物是最丰富的生物分子,承担着许多作用,如能量的储存和运输(淀粉、糖原)和作为结构要件(植物的纤维素、动物的甲壳素)。基本的碳水化合物单位称为单糖<ref name="Nelson" />,包括半乳糖、果糖以及最重要的葡萄糖。单糖能以几乎无限多样的方式连接在一起形成多糖<ref>{{cite journal | vauthors = Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R | title = Glycomics: an integrated systems approach to structure-function relationships of glycans | journal = Nature Methods | volume = 2 | issue = 11 | pages = 817–24 | date = November 2005 | pmid = 16278650 | doi = 10.1038/nmeth807 | s2cid = 4644919 }}</ref>。
+
碳水化合物是醛或酮,带有许多羟基,能以直链或环的形式存在。碳水化合物是最丰富的生物分子,承担着许多作用,如能量的储存和运输(淀粉、糖原)和作为结构要件(植物的纤维素、动物的甲壳素)。基本的碳水化合物单位称为单糖<ref name="Nelson" />,包括半乳糖、果糖以及最重要的葡萄糖。单糖能以几乎无限多样的方式连接在一起形成多糖<ref>{{cite journal | vauthors = Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R | title = Glycomics: an integrated systems approach to structure-function relationships of glycans | journal = Nature Methods | volume = 2 | issue = 11 | pages = 817–24 | date = November 2005 | pmid = 16278650 | doi = 10.1038/nmeth807 }}</ref>。
 
===核苷酸 ===
 
===核苷酸 ===
   第62行: 第62行:  
其中一种中心辅酶是三磷酸腺苷(ATP),它是细胞的通用能源货币。这种核苷酸在不同的化学反应之间传递化学能。细胞中只有少量的ATP,但由于ATP是不断再生的,所以人体每天可以使用大约相当于自身重量的ATP<ref name="Dimroth" />。ATP是分解代谢和合成代谢之间的桥梁。分解代谢分解分子,合成代谢则将它们组合在一起。分解反应产生ATP,合成代谢反应则消耗ATP。它也是磷酸化反应中磷酸基团的载体<ref>{{cite journal | vauthors = Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski MR, Pinton P | display-authors = 6 | title = ATP synthesis and storage | journal = Purinergic Signalling | volume = 8 | issue = 3 | pages = 343–57 | date = September 2012 | pmid = 22528680 | pmc = 3360099 | doi = 10.1007/s11302-012-9305-8 }}</ref>。
 
其中一种中心辅酶是三磷酸腺苷(ATP),它是细胞的通用能源货币。这种核苷酸在不同的化学反应之间传递化学能。细胞中只有少量的ATP,但由于ATP是不断再生的,所以人体每天可以使用大约相当于自身重量的ATP<ref name="Dimroth" />。ATP是分解代谢和合成代谢之间的桥梁。分解代谢分解分子,合成代谢则将它们组合在一起。分解反应产生ATP,合成代谢反应则消耗ATP。它也是磷酸化反应中磷酸基团的载体<ref>{{cite journal | vauthors = Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski MR, Pinton P | display-authors = 6 | title = ATP synthesis and storage | journal = Purinergic Signalling | volume = 8 | issue = 3 | pages = 343–57 | date = September 2012 | pmid = 22528680 | pmc = 3360099 | doi = 10.1007/s11302-012-9305-8 }}</ref>。
   −
[[维生素]]是一类细胞不能合成的微量有机化合物。在人体营养中,大多数维生素经过修饰后都具有辅酶的功能,例如,所有水溶性维生素在细胞中使用时都会被磷酸化或与核苷酸偶联<ref>{{cite journal|last1=Berg|first1=Jeremy M.|last2=Tymoczko|first2=John L.|last3=Stryer|first3=Lubert | name-list-style = vanc |date=2002|title=Vitamins Are Often Precursors to Coenzymes|url=https://www.ncbi.nlm.nih.gov/books/NBK22549/|journal=Biochemistry. 5th Edition|language=en}}</ref>。[[烟酰胺腺嘌呤二核苷酸]](NAD<sup>+</sup>)是维生素B<sub>3</sub>(烟酸)的衍生物,它是一种重要的辅酶,起着氢接受器的作用。数百种不同类型的脱氢酶从其底物中去除电子,并将NAD<sup>+</sup>还原成NADH。这种还原形式的辅酶是细胞中任何需要还原其底物的还原酶的底物。烟酰胺腺嘌呤二核苷酸在细胞中以两种相关形式存在<ref>{{cite journal | vauthors = Pollak N, Dölle C, Ziegler M | title = The power to reduce: pyridine nucleotides--small molecules with a multitude of functions | journal = The Biochemical Journal | volume = 402 | issue = 2 | pages = 205–18 | date = March 2007 | pmid = 17295611 | pmc = 1798440 | doi = 10.1042/BJ20061638 }}</ref>,即NADH和NADPH。NAD <sup>+</sup>/NADH 形式在分解代谢反应中起重要作用,而 NADP <sup>+</sup>/NADPH 形式在分解代谢反应中起重要作用<ref>{{cite book|last=Fatih|first=Yildiz | name-list-style = vanc |title=Advances in food biochemistry|publisher=CRC Press|year=2009|isbn=978-1-4200-0769-5|location=Boca Raton|pages=228|oclc=607553259}}</ref>。
+
[[维生素]]是一类细胞不能合成的微量有机化合物。在人体营养中,大多数维生素经过修饰后都具有辅酶的功能,例如,所有水溶性维生素在细胞中使用时都会被磷酸化或与核苷酸偶联<ref>{{cite journal|last1=Berg|first1=Jeremy M.|last2=Tymoczko|first2=John L.|last3=Stryer|first3=Lubert|date=2002|title=Vitamins Are Often Precursors to Coenzymes|url=https://www.ncbi.nlm.nih.gov/books/NBK22549/|journal=Biochemistry. 5th Edition|language=en}}</ref>。[[烟酰胺腺嘌呤二核苷酸]](NAD<sup>+</sup>)是维生素B<sub>3</sub>(烟酸)的衍生物,它是一种重要的辅酶,起着氢接受器的作用。数百种不同类型的脱氢酶从其底物中去除电子,并将NAD<sup>+</sup>还原成NADH。这种还原形式的辅酶是细胞中任何需要还原其底物的还原酶的底物。烟酰胺腺嘌呤二核苷酸在细胞中以两种相关形式存在<ref>{{cite journal | vauthors = Pollak N, Dölle C, Ziegler M | title = The power to reduce: pyridine nucleotides--small molecules with a multitude of functions | journal = The Biochemical Journal | volume = 402 | issue = 2 | pages = 205–18 | date = March 2007 | pmid = 17295611 | pmc = 1798440 | doi = 10.1042/BJ20061638 }}</ref>,即NADH和NADPH。NAD <sup>+</sup>/NADH 形式在分解代谢反应中起重要作用,而 NADP <sup>+</sup>/NADPH 形式在分解代谢反应中起重要作用<ref>{{cite book|last=Fatih|first=Yildiz | name-list-style = vanc |title=Advances in food biochemistry|publisher=CRC Press|year=2009|isbn=978-1-4200-0769-5|location=Boca Raton|pages=228}}</ref>。
 
[[File:1GZX Haemoglobin.png|thumb|upright=1.35|right|The structure of iron-containing [[hemoglobin]]. 含铁[[血红蛋白]]的结构。蛋白质亚基为红色和蓝色,含铁血红素基为绿色。]]
 
[[File:1GZX Haemoglobin.png|thumb|upright=1.35|right|The structure of iron-containing [[hemoglobin]]. 含铁[[血红蛋白]]的结构。蛋白质亚基为红色和蓝色,含铁血红素基为绿色。]]
   第68行: 第68行:  
无机元素在新陈代谢中起着关键作用; 有些元素含量丰富(例如:钠和钾) ,而另一些元素则在微量浓度下发挥作用。人的体重约99%是由碳、氮、钙、钠、氯、钾、氢、磷、氧和硫等元素组成。有机化合物(蛋白质、脂类和碳水化合物)含有大部分的碳和氮;大部分的氧和氢以水的形式存在。
 
无机元素在新陈代谢中起着关键作用; 有些元素含量丰富(例如:钠和钾) ,而另一些元素则在微量浓度下发挥作用。人的体重约99%是由碳、氮、钙、钠、氯、钾、氢、磷、氧和硫等元素组成。有机化合物(蛋白质、脂类和碳水化合物)含有大部分的碳和氮;大部分的氧和氢以水的形式存在。
   −
丰富的无机元素可以电解质。最重要的离子是钠、钾、钙、镁、氯化物、磷酸盐和有机离子重碳酸盐。维持细胞膜上精确的离子梯度可以维持[[渗透压]]和 ph 值。离子对于神经和肌肉功能也是至关重要的<ref>{{cite book |date=| chapter = Electrolyte Balance | chapter-url=https://opentextbc.ca/anatomyandphysiology/chapter/26-3-electrolyte-balance/ | title = Anatomy and Physiology | publisher = OpenStax |access-date=23 June 2020 }}</ref>,因为这些组织中的动作电位是由细胞外液和细胞液之间的电解质交换产生的。电解质通过细胞膜上称为离子通道的蛋白质进入和离开细胞<ref>{{cite book |last1=Lodish |first1=Harvey |last2=Berk |first2=Arnold |last3=Zipursky |first3=S. Lawrence |last4=Matsudaira |first4=Paul |last5=Baltimore |first5=David |last6=Darnell |first6=James | name-list-style = vanc |date=2000| chapter =The Action Potential and Conduction of Electric Impulses|chapter-url= https://www.ncbi.nlm.nih.gov/books/NBK21668/ |title =Molecular Cell Biology | edition = 4th |language=en|via=NCBI}}</ref> 。例如,肌肉收缩依赖于钙、钠和钾通过细胞膜和T管道中的离子通道的运动<ref>{{cite journal | vauthors = Dulhunty AF | title = Excitation-contraction coupling from the 1950s into the new millennium | journal = Clinical and Experimental Pharmacology & Physiology | volume = 33 | issue = 9 | pages = 763–72 | date = September 2006 | pmid = 16922804 | doi = 10.1111/j.1440-1681.2006.04441.x | s2cid = 37462321 }}</ref>。
+
丰富的无机元素可以电解质。最重要的离子是钠、钾、钙、镁、氯化物、磷酸盐和有机离子重碳酸盐。维持细胞膜上精确的离子梯度可以维持[[渗透压]]和 ph 值。离子对于神经和肌肉功能也是至关重要的<ref>{{cite book |date=| chapter = Electrolyte Balance | chapter-url=https://opentextbc.ca/anatomyandphysiology/chapter/26-3-electrolyte-balance/ | title = Anatomy and Physiology | publisher = OpenStax |access-date=23 June 2020 }}</ref>,因为这些组织中的动作电位是由细胞外液和细胞液之间的电解质交换产生的。电解质通过细胞膜上称为离子通道的蛋白质进入和离开细胞<ref>{{cite book |last1=Lodish |first1=Harvey |last2=Berk |first2=Arnold |last3=Zipursky |first3=S. Lawrence |last4=Matsudaira |first4=Paul |last5=Baltimore |first5=David |last6=Darnell |first6=James | name-list-style = vanc |date=2000| chapter =The Action Potential and Conduction of Electric Impulses|chapter-url= https://www.ncbi.nlm.nih.gov/books/NBK21668/ |title =Molecular Cell Biology | edition = 4th |language=en|via=NCBI}}</ref> 。例如,肌肉收缩依赖于钙、钠和钾通过细胞膜和T管道中的离子通道的运动<ref>{{cite journal | vauthors = Dulhunty AF | title = Excitation-contraction coupling from the 1950s into the new millennium | journal = Clinical and Experimental Pharmacology & Physiology | volume = 33 | issue = 9 | pages = 763–72 | date = September 2006 | pmid = 16922804 | doi = 10.1111/j.1440-1681.2006.04441.x }}</ref>。
   −
过渡金属通常以微量元素的形式存在于生物体内,其中锌和铁最为丰富<ref>{{cite book| vauthors = Torres-Romero JC, Alvarez-Sánchez ME, Fernández-Martín K, Alvarez-Sánchez LC, Arana-Argáez V, Ramírez-Camacho M, Lara-Riegos J | chapter=Zinc Efflux in Trichomonas vaginalis: In Silico Identification and Expression Analysis of CDF-Like Genes|date=2018| title =Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues|pages=149–168| veditors = Olivares-Quiroz L, Resendis-Antonio O |place=Cham|publisher=Springer International Publishing|language=en|doi=10.1007/978-3-319-73975-5_8|isbn=978-3-319-73975-5 }}</ref>。这些金属元素在某些蛋白质中作为辅因子,是催化酶等酶和血红蛋白等氧载体蛋白活性所必需的金属辅因子。<ref>{{cite book|last=Craig Will|first=Leonard Ashley | name-list-style = vanc |title=Manufacturing Engineering & Technology|publisher=Scientific e-Resources|year=2019|isbn=9781839472428|location=Waltham Abbey|pages=190–196}}</ref>金属辅因子与蛋白质中的特定位点紧密结合,虽然在催化过程中酶的辅因子可以被改变,但在催化反应结束时,它们总是恢复到原来的状态。金属微量营养素由特定的转运体带入生物体内,不用时与储存蛋白如铁蛋白或金属硫蛋白结合<ref>{{cite journal | vauthors = Cousins RJ, Liuzzi JP, Lichten LA | title = Mammalian zinc transport, trafficking, and signals | journal = The Journal of Biological Chemistry | volume = 281 | issue = 34 | pages = 24085–9 | date = August 2006 | pmid = 16793761 | doi = 10.1074/jbc.R600011200 | url = https://www.jbc.org/content/281/34/24085 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Dunn LL, Suryo Rahmanto Y, Richardson DR | title = Iron uptake and metabolism in the new millennium | journal = Trends in Cell Biology | volume = 17 | issue = 2 | pages = 93–100 | date = February 2007 | pmid = 17194590 | doi = 10.1016/j.tcb.2006.12.003 }}</ref>。
+
过渡金属通常以微量元素的形式存在于生物体内,其中锌和铁最为丰富<ref>{{cite book| vauthors = Torres-Romero JC, Alvarez-Sánchez ME, Fernández-Martín K, Alvarez-Sánchez LC, Arana-Argáez V, Ramírez-Camacho M, Lara-Riegos J | chapter=Zinc Efflux in Trichomonas vaginalis: In Silico Identification and Expression Analysis of CDF-Like Genes|date=2018| title =Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues|pages=149–168| veditors = Olivares-Quiroz L, Resendis-Antonio O |place=Cham|publisher=Springer International Publishing|language=en|isbn=978-3-319-73975-5 }}</ref>。这些金属元素在某些蛋白质中作为辅因子,是催化酶等酶和血红蛋白等氧载体蛋白活性所必需的金属辅因子。<ref>{{cite book|last=Craig Will|first=Leonard Ashley | name-list-style = vanc |title=Manufacturing Engineering & Technology|publisher=Scientific e-Resources|year=2019|isbn=9781839472428|location=Waltham Abbey|pages=190–196}}</ref>金属辅因子与蛋白质中的特定位点紧密结合,虽然在催化过程中酶的辅因子可以被改变,但在催化反应结束时,它们总是恢复到原来的状态。金属微量营养素由特定的转运体带入生物体内,不用时与储存蛋白如铁蛋白或金属硫蛋白结合<ref>{{cite journal | vauthors = Cousins RJ, Liuzzi JP, Lichten LA | title = Mammalian zinc transport, trafficking, and signals | journal = The Journal of Biological Chemistry | volume = 281 | issue = 34 | pages = 24085–9 | date = August 2006 | pmid = 16793761 | doi = 10.1074/jbc.R600011200 | url = https://www.jbc.org/content/281/34/24085 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Dunn LL, Suryo Rahmanto Y, Richardson DR | title = Iron uptake and metabolism in the new millennium | journal = Trends in Cell Biology | volume = 17 | issue = 2 | pages = 93–100 | date = February 2007 | pmid = 17194590 | doi = 10.1016/j.tcb.2006.12.003 }}</ref>。
 
==分解代谢==
 
==分解代谢==
分解代谢是指分解大分子的一系列代谢过程。其中包括分解和氧化食物分子。分解代谢反应的目的是为构建分子的合成代谢反应提供所需的能量和成分。这些分解代谢反应的确切性质因生物体而异<ref name="Alberts 2002">{{cite book |last1=Alberts|first1=Bruce|last2=Johnson|first2=Alexander|last3=Lewis|first3=Julian|last4=Raff|first4=Martin|last5=Roberts|first5=Keith|last6=Walter|first6=Peter| name-list-style = vanc |date=2002|chapter =How Cells Obtain Energy from Food|url=https://www.ncbi.nlm.nih.gov/books/NBK26882/|title =Molecular Biology of the Cell | edition = 4th |language=en|via=NCBI}}</ref>,生物体可以根据它们的能量和碳的来源(其主要营养组)进行分类,如下表所示。有机养生物把有机分子作为能量来源,而岩养生物利用无机基质,光养生物利用阳光(获得化学能)<ref>{{cite journal|last=Raven|first=Ja| name-list-style = vanc |date=2009-09-03|title=Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments|url=http://www.int-res.com/abstracts/ame/v56/n2-3/p177-192/|journal=Aquatic Microbial Ecology|language=en|volume=56|pages=177–192|doi=10.3354/ame01315|issn=0948-3055|doi-access=free}}</ref> 。然而,所有这些不同形式的新陈代谢都依赖于氧化还原反应,这些反应涉及电子从还原的供体分子(如有机分子,水,氨,硫化氢或亚铁离子)转移到受体分子(如氧,硝酸盐或硫酸盐)。在动物中,这些反应涉及复杂的有机分子,它们被分解成更简单的分子,如二氧化碳和水。在诸如植物和蓝藻这样的光合生物体中,这些电子转移反应不释放能量,而是用来储存从阳光中吸收的能量<ref name="Nelson2004">{{cite journal | vauthors = Nelson N, Ben-Shem A | title = The complex architecture of oxygenic photosynthesis | journal = Nature Reviews. Molecular Cell Biology | volume = 5 | issue = 12 | pages = 971–82 | date = December 2004 | pmid = 15573135 | doi = 10.1038/nrm1525 | s2cid = 5686066 }}</ref>。
+
分解代谢是指分解大分子的一系列代谢过程。其中包括分解和氧化食物分子。分解代谢反应的目的是为构建分子的合成代谢反应提供所需的能量和成分。这些分解代谢反应的确切性质因生物体而异<ref name="Alberts 2002">{{cite book |last1=Alberts|first1=Bruce|last2=Johnson|first2=Alexander|last3=Lewis|first3=Julian|last4=Raff|first4=Martin|last5=Roberts|first5=Keith|last6=Walter|first6=Peter| name-list-style = vanc |date=2002|chapter =How Cells Obtain Energy from Food|url=https://www.ncbi.nlm.nih.gov/books/NBK26882/|title =Molecular Biology of the Cell | edition = 4th |language=en|via=NCBI}}</ref>,生物体可以根据它们的能量和碳的来源(其主要营养组)进行分类,如下表所示。有机养生物把有机分子作为能量来源,而岩养生物利用无机基质,光养生物利用阳光(获得化学能)<ref>{{cite journal|last=Raven|first=Ja|date=2009-09-03|title=Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments|url=http://www.int-res.com/abstracts/ame/v56/n2-3/p177-192/|journal=Aquatic Microbial Ecology|language=en|volume=56|pages=177–192|doi=10.3354/ame01315|issn=0948-3055|doi-access=free}}</ref> 。然而,所有这些不同形式的新陈代谢都依赖于氧化还原反应,这些反应涉及电子从还原的供体分子(如有机分子,水,氨,硫化氢或亚铁离子)转移到受体分子(如氧,硝酸盐或硫酸盐)。在动物中,这些反应涉及复杂的有机分子,它们被分解成更简单的分子,如二氧化碳和水。在诸如植物和蓝藻这样的光合生物体中,这些电子转移反应不释放能量,而是用来储存从阳光中吸收的能量<ref name="Nelson2004">{{cite journal | vauthors = Nelson N, Ben-Shem A | title = The complex architecture of oxygenic photosynthesis | journal = Nature Reviews. Molecular Cell Biology | volume = 5 | issue = 12 | pages = 971–82 | date = December 2004 | pmid = 15573135 | doi = 10.1038/nrm1525 }}</ref>。
    
{| class="wikitable float-right"  style="text-align:center; width:50%;"
 
{| class="wikitable float-right"  style="text-align:center; width:50%;"
|+根据新陈代谢方式对生物进行分类 <ref>{{cite book| vauthors = Madigan MT, Martinko JM |title=Brock Mikrobiologie|date=2006|publisher=Pearson Studium|isbn=3-8273-7187-2|edition=11., überarb. Aufl|location=München|pages=604, 621|oclc=162303067}}</ref>
+
|+根据新陈代谢方式对生物进行分类 <ref>{{cite book| vauthors = Madigan MT, Martinko JM |title=Brock Mikrobiologie|date=2006|publisher=Pearson Studium|isbn=3-8273-7187-2|edition=11., überarb. Aufl|location=München|pages=604, 621}}</ref>
    
|-
 
|-
第114行: 第114行:  
更多信息:消化和胃肠道
 
更多信息:消化和胃肠道
   −
大分子不能直接被细胞处理。大分子必须先被分解成较小的单位,才能用于细胞代谢。不同类别的酶被用来消化这些聚合物。这些消化酶包括将蛋白质消化成氨基酸的蛋白酶,以及将多糖消化成单糖的糖苷水解酶<ref>{{cite book|last=Demirel, Yaşar|title=Energy : production, conversion, storage, conservation, and coupling|publisher=Springer|year=2016|isbn=978-3-319-29650-0|edition=Second|location=Lincoln|pages=431|oclc=945435943}}</ref>。
+
大分子不能直接被细胞处理。大分子必须先被分解成较小的单位,才能用于细胞代谢。不同类别的酶被用来消化这些聚合物。这些消化酶包括将蛋白质消化成氨基酸的蛋白酶,以及将多糖消化成单糖的糖苷水解酶<ref>{{cite book|last=Demirel, Yaşar|title=Energy : production, conversion, storage, conservation, and coupling|publisher=Springer|year=2016|isbn=978-3-319-29650-0|edition=Second|location=Lincoln|pages=431}}</ref>。
   −
微生物简单直接地将消化酶分泌到周围环境中<ref>{{cite journal | vauthors = Häse CC, Finkelstein RA | title = Bacterial extracellular zinc-containing metalloproteases | journal = Microbiological Reviews | volume = 57 | issue = 4 | pages = 823–37 | date = December 1993 | pmid = 8302217 | pmc = 372940 | doi = 10.1128/MMBR.57.4.823-837.1993 }}</ref><ref>{{cite journal | vauthors = Gupta R, Gupta N, Rathi P | title = Bacterial lipases: an overview of production, purification and biochemical properties | journal = Applied Microbiology and Biotechnology | volume = 64 | issue = 6 | pages = 763–81 | date = June 2004 | pmid = 14966663 | doi = 10.1007/s00253-004-1568-8 | s2cid = 206934353 }}</ref>,而动物必须通过它们肠道(包括胃、胰腺和唾液腺)中的特定细胞分泌这些酶。<ref>{{cite journal | vauthors = Hoyle T | title = The digestive system: linking theory and practice | journal = British Journal of Nursing | volume = 6 | issue = 22 | pages = 1285–91 | year = 1997 | pmid = 9470654 | doi = 10.12968/bjon.1997.6.22.1285 }}</ref>这些细胞外酶释放的氨基酸或糖通过活性转运蛋白被泵入细胞内<ref>{{cite journal | vauthors = Souba WW, Pacitti AJ | title = How amino acids get into cells: mechanisms, models, menus, and mediators | journal = JPEN. Journal of Parenteral and Enteral Nutrition | volume = 16 | issue = 6 | pages = 569–78 | year = 1992 | pmid = 1494216 | doi = 10.1177/0148607192016006569 }}</ref><ref>{{cite journal | vauthors = Barrett MP, Walmsley AR, Gould GW | title = Structure and function of facilitative sugar transporters | journal = Current Opinion in Cell Biology | volume = 11 | issue = 4 | pages = 496–502 | date = August 1999 | pmid = 10449337 | doi = 10.1016/S0955-0674(99)80072-6 }}</ref>。
+
微生物简单直接地将消化酶分泌到周围环境中<ref>{{cite journal | vauthors = Häse CC, Finkelstein RA | title = Bacterial extracellular zinc-containing metalloproteases | journal = Microbiological Reviews | volume = 57 | issue = 4 | pages = 823–37 | date = December 1993 | pmid = 8302217 | pmc = 372940 | doi = 10.1128/MMBR.57.4.823-837.1993 }}</ref><ref>{{cite journal | vauthors = Gupta R, Gupta N, Rathi P | title = Bacterial lipases: an overview of production, purification and biochemical properties | journal = Applied Microbiology and Biotechnology | volume = 64 | issue = 6 | pages = 763–81 | date = June 2004 | pmid = 14966663 | doi = 10.1007/s00253-004-1568-8 }}</ref>,而动物必须通过它们肠道(包括胃、胰腺和唾液腺)中的特定细胞分泌这些酶。<ref>{{cite journal | vauthors = Hoyle T | title = The digestive system: linking theory and practice | journal = British Journal of Nursing | volume = 6 | issue = 22 | pages = 1285–91 | year = 1997 | pmid = 9470654 | doi = 10.12968/bjon.1997.6.22.1285 }}</ref>这些细胞外酶释放的氨基酸或糖通过活性转运蛋白被泵入细胞内<ref>{{cite journal | vauthors = Souba WW, Pacitti AJ | title = How amino acids get into cells: mechanisms, models, menus, and mediators | journal = JPEN. Journal of Parenteral and Enteral Nutrition | volume = 16 | issue = 6 | pages = 569–78 | year = 1992 | pmid = 1494216 | doi = 10.1177/0148607192016006569 }}</ref><ref>{{cite journal | vauthors = Barrett MP, Walmsley AR, Gould GW | title = Structure and function of facilitative sugar transporters | journal = Current Opinion in Cell Biology | volume = 11 | issue = 4 | pages = 496–502 | date = August 1999 | pmid = 10449337 | doi = 10.1016/S0955-0674(99)80072-6 }}</ref>。
    
[[File:Catabolism schematic.svg|thumb|left|upright=1.35|[[蛋白质]],[[碳水化合物]]和[[脂肪]]分解代谢的简化概述 ]]
 
[[File:Catabolism schematic.svg|thumb|left|upright=1.35|[[蛋白质]],[[碳水化合物]]和[[脂肪]]分解代谢的简化概述 ]]
第144行: 第144行:  
更多信息:微生物代谢和氮循环
 
更多信息:微生物代谢和氮循环
   −
化能无机营养是在原核生物中发现的一种新陈代谢,其能量来自于无机化合物的氧化。这些生物可以利用氢气、<ref>{{cite journal | vauthors = Friedrich B, Schwartz E | title = Molecular biology of hydrogen utilization in aerobic chemolithotrophs | journal = Annual Review of Microbiology | volume = 47 | issue =  | pages = 351–83 | year = 1993 | pmid = 8257102 | doi = 10.1146/annurev.mi.47.100193.002031 }}</ref> 还原硫化合物(如硫化物、硫化氢和硫代硫酸酯<ref>{{cite journal | vauthors = Weber KA, Achenbach LA, Coates JD | title = Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction | journal = Nature Reviews. Microbiology | volume = 4 | issue = 10 | pages = 752–64 | date = October 2006 | pmid = 16980937 | doi = 10.1038/nrmicro1490 | url = https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1203&context=bioscifacpub | s2cid = 8528196 }}</ref>)或氨<ref>{{cite journal | vauthors = Jetten MS, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UG, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MC, Kuenen JG | display-authors = 6 | title = The anaerobic oxidation of ammonium | journal = FEMS Microbiology Reviews | volume = 22 | issue = 5 | pages = 421–37 | date = December 1998 | pmid = 9990725 | doi = 10.1111/j.1574-6976.1998.tb00379.x | doi-access = free }}</ref>作为还原力的来源,它们从这些化合物与氧或亚硝酸盐等电子接受体的氧化作用中获得能量。这些微生物过程<ref>{{cite journal | vauthors = Simon J | title = Enzymology and bioenergetics of respiratory nitrite ammonification | journal = FEMS Microbiology Reviews | volume = 26 | issue = 3 | pages = 285–309 | date = August 2002 | pmid = 12165429 | doi = 10.1111/j.1574-6976.2002.tb00616.x | doi-access = free }}</ref>在全球生物地球化学循环(如乙酰化、硝化和反硝化)中非常重要,对土壤肥力也很关键<ref>{{cite journal | vauthors = Conrad R | title = Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) | journal = Microbiological Reviews | volume = 60 | issue = 4 | pages = 609–40 | date = December 1996 | pmid = 8987358 | pmc = 239458 | doi = 10.1128/MMBR.60.4.609-640.1996 }}</ref><ref>{{cite journal | vauthors = Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C | title = Microbial co-operation in the rhizosphere | journal = Journal of Experimental Botany | volume = 56 | issue = 417 | pages = 1761–78 | date = July 2005 | pmid = 15911555 | doi = 10.1093/jxb/eri197 | doi-access = free }}</ref>。
+
化能无机营养是在原核生物中发现的一种新陈代谢,其能量来自于无机化合物的氧化。这些生物可以利用氢气、<ref>{{cite journal | vauthors = Friedrich B, Schwartz E | title = Molecular biology of hydrogen utilization in aerobic chemolithotrophs | journal = Annual Review of Microbiology | volume = 47 | issue =  | pages = 351–83 | year = 1993 | pmid = 8257102 | doi = 10.1146/annurev.mi.47.100193.002031 }}</ref> 还原硫化合物(如硫化物、硫化氢和硫代硫酸酯<ref>{{cite journal | vauthors = Weber KA, Achenbach LA, Coates JD | title = Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction | journal = Nature Reviews. Microbiology | volume = 4 | issue = 10 | pages = 752–64 | date = October 2006 | pmid = 16980937 | doi = 10.1038/nrmicro1490 | url = https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1203&context=bioscifacpub }}</ref>)或氨<ref>{{cite journal | vauthors = Jetten MS, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UG, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MC, Kuenen JG | display-authors = 6 | title = The anaerobic oxidation of ammonium | journal = FEMS Microbiology Reviews | volume = 22 | issue = 5 | pages = 421–37 | date = December 1998 | pmid = 9990725 | doi = 10.1111/j.1574-6976.1998.tb00379.x | doi-access = free }}</ref>作为还原力的来源,它们从这些化合物与氧或亚硝酸盐等电子接受体的氧化作用中获得能量。这些微生物过程<ref>{{cite journal | vauthors = Simon J | title = Enzymology and bioenergetics of respiratory nitrite ammonification | journal = FEMS Microbiology Reviews | volume = 26 | issue = 3 | pages = 285–309 | date = August 2002 | pmid = 12165429 | doi = 10.1111/j.1574-6976.2002.tb00616.x | doi-access = free }}</ref>在全球生物地球化学循环(如乙酰化、硝化和反硝化)中非常重要,对土壤肥力也很关键<ref>{{cite journal | vauthors = Conrad R | title = Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) | journal = Microbiological Reviews | volume = 60 | issue = 4 | pages = 609–40 | date = December 1996 | pmid = 8987358 | pmc = 239458 | doi = 10.1128/MMBR.60.4.609-640.1996 }}</ref><ref>{{cite journal | vauthors = Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C | title = Microbial co-operation in the rhizosphere | journal = Journal of Experimental Botany | volume = 56 | issue = 417 | pages = 1761–78 | date = July 2005 | pmid = 15911555 | doi = 10.1093/jxb/eri197 | doi-access = free }}</ref>。
    
===光能 ===
 
===光能 ===
第151行: 第151行:  
阳光中的能量被植物、蓝藻、紫细菌、绿硫细菌和一些原生生物所吸收。这个过程通常与二氧化碳转化为有机化合物相结合,这是光合作用的一部分,下文将对此进行讨论。然而,原核生物的能量捕获和碳固定系统可以单独运作,因为紫色细菌和绿硫细菌可以利用阳光作为能源,同时在碳固定和有机化合物发酵之间转换<ref>{{cite journal | vauthors = van der Meer MT, Schouten S, Bateson MM, Nübel U, Wieland A, Kühl M, de Leeuw JW, Sinninghe Damsté JS, Ward DM | display-authors = 6 | title = Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park | journal = Applied and Environmental Microbiology | volume = 71 | issue = 7 | pages = 3978–86 | date = July 2005 | pmid = 16000812 | pmc = 1168979 | doi = 10.1128/AEM.71.7.3978-3986.2005 }}</ref><ref>{{cite journal | vauthors = Tichi MA, Tabita FR | title = Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism | journal = Journal of Bacteriology | volume = 183 | issue = 21 | pages = 6344–54 | date = November 2001 | pmid = 11591679 | pmc = 100130 | doi = 10.1128/JB.183.21.6344-6354.2001 }}</ref>。
 
阳光中的能量被植物、蓝藻、紫细菌、绿硫细菌和一些原生生物所吸收。这个过程通常与二氧化碳转化为有机化合物相结合,这是光合作用的一部分,下文将对此进行讨论。然而,原核生物的能量捕获和碳固定系统可以单独运作,因为紫色细菌和绿硫细菌可以利用阳光作为能源,同时在碳固定和有机化合物发酵之间转换<ref>{{cite journal | vauthors = van der Meer MT, Schouten S, Bateson MM, Nübel U, Wieland A, Kühl M, de Leeuw JW, Sinninghe Damsté JS, Ward DM | display-authors = 6 | title = Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park | journal = Applied and Environmental Microbiology | volume = 71 | issue = 7 | pages = 3978–86 | date = July 2005 | pmid = 16000812 | pmc = 1168979 | doi = 10.1128/AEM.71.7.3978-3986.2005 }}</ref><ref>{{cite journal | vauthors = Tichi MA, Tabita FR | title = Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism | journal = Journal of Bacteriology | volume = 183 | issue = 21 | pages = 6344–54 | date = November 2001 | pmid = 11591679 | pmc = 100130 | doi = 10.1128/JB.183.21.6344-6354.2001 }}</ref>。
   −
在许多生物体中,太阳能的获取在原理上类似于氧化磷酸化,因为它涉及到以质子浓度梯度的形式储存能量。这种质子动力驱动 ATP 的合成<ref>{{cite book |last1=Alberts|first1=Bruce|last2=Johnson|first2=Alexander|last3=Lewis|first3=Julian|last4=Raff|first4=Martin|last5=Roberts|first5=Keith|last6=Walter|first6=Peter | name-list-style = vanc |date=2002|chapter =Energy Conversion: Mitochondria and Chloroplasts|url=https://www.ncbi.nlm.nih.gov/books/NBK21063/|title =Molecular Biology of the Cell. 4th edition|language=en}}</ref> 。驱动这种电子传递链所需的电子来自于聚光蛋白质,这种蛋白质被叫做光合反应中心。根据存在的光合色素的性质,反应中心分为两种类型。大多数光合细菌只有一种类型,而植物和蓝藻有两种类型<ref>{{cite journal | vauthors = Allen JP, Williams JC | title = Photosynthetic reaction centers | journal = FEBS Letters | volume = 438 | issue = 1–2 | pages = 5–9 | date = October 1998 | pmid = 9821949 | doi = 10.1016/S0014-5793(98)01245-9 | s2cid = 21596537 }}</ref>。
+
在许多生物体中,太阳能的获取在原理上类似于氧化磷酸化,因为它涉及到以质子浓度梯度的形式储存能量。这种质子动力驱动 ATP 的合成<ref>{{cite book |last1=Alberts|first1=Bruce|last2=Johnson|first2=Alexander|last3=Lewis|first3=Julian|last4=Raff|first4=Martin|last5=Roberts|first5=Keith|last6=Walter|first6=Peter | name-list-style = vanc |date=2002|chapter =Energy Conversion: Mitochondria and Chloroplasts|url=https://www.ncbi.nlm.nih.gov/books/NBK21063/|title =Molecular Biology of the Cell. 4th edition|language=en}}</ref> 。驱动这种电子传递链所需的电子来自于聚光蛋白质,这种蛋白质被叫做光合反应中心。根据存在的光合色素的性质,反应中心分为两种类型。大多数光合细菌只有一种类型,而植物和蓝藻有两种类型<ref>{{cite journal | vauthors = Allen JP, Williams JC | title = Photosynthetic reaction centers | journal = FEBS Letters | volume = 438 | issue = 1–2 | pages = 5–9 | date = October 1998 | pmid = 9821949 | doi = 10.1016/S0014-5793(98)01245-9 }}</ref>。
   −
在植物、藻类和蓝藻中,光系统 II 利用光能将电子从水中移走,释放出氧气。然后电子流向细胞色素b6f蛋白复合体,后者利用它们的能量穿过叶绿体中的类囊体膜,泵入质子<ref name=Nelson2004/>。这些质子在驱动ATP合成酶时通过膜向后移动,就像之前一样。然后电子流经光系统I,可以用来减少辅酶NADP< sup > + </sup ><ref>{{cite journal | vauthors = Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T | title = Cyclic electron flow around photosystem I is essential for photosynthesis | journal = Nature | volume = 429 | issue = 6991 | pages = 579–82 | date = June 2004 | pmid = 15175756 | doi = 10.1038/nature02598 | bibcode = 2004Natur.429..579M | s2cid = 4421776 }}</ref>。这些辅酶可用于[[卡尔文循环]](下文将对此进行讨论),或被循环用于进一步生成ATP。
+
在植物、藻类和蓝藻中,光系统 II 利用光能将电子从水中移走,释放出氧气。然后电子流向细胞色素b6f蛋白复合体,后者利用它们的能量穿过叶绿体中的类囊体膜,泵入质子<ref name=Nelson2004/>。这些质子在驱动ATP合成酶时通过膜向后移动,就像之前一样。然后电子流经光系统I,可以用来减少辅酶NADP< sup > + </sup ><ref>{{cite journal | vauthors = Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T | title = Cyclic electron flow around photosystem I is essential for photosynthesis | journal = Nature | volume = 429 | issue = 6991 | pages = 579–82 | date = June 2004 | pmid = 15175756 | doi = 10.1038/nature02598 | bibcode = 2004Natur.429..579M }}</ref>。这些辅酶可用于[[卡尔文循环]](下文将对此进行讨论),或被循环用于进一步生成ATP。
    
==合成代谢==
 
==合成代谢==
 
更多信息:合成代谢
 
更多信息:合成代谢
   −
'''合成代谢'''是一系列建设性的新陈代谢过程,在这一系列过程中分解代谢所释放的能量被用来合成复杂的分子。一般来说,组成细胞结构的复杂分子是由小而简单的前体逐步构成的。合成代谢包括三个基本阶段。首先是氨基酸、单糖、异戊二烯和核苷酸等前体的产生,其次是利用ATP产生的能量将它们活化成活性形式,第三是将这些前体组装成复杂的分子,如蛋白质、多糖、脂质和核酸<ref name=":0">{{cite web|last=Mandal|first=Ananya| name-list-style = vanc |date=2009-11-26|title=What is Anabolism?|url=https://www.news-medical.net/life-sciences/What-is-Anabolism.aspx|access-date=2020-07-04|website=News-Medical.net|language=en}}</ref>。
+
'''合成代谢'''是一系列建设性的新陈代谢过程,在这一系列过程中分解代谢所释放的能量被用来合成复杂的分子。一般来说,组成细胞结构的复杂分子是由小而简单的前体逐步构成的。合成代谢包括三个基本阶段。首先是氨基酸、单糖、异戊二烯和核苷酸等前体的产生,其次是利用ATP产生的能量将它们活化成活性形式,第三是将这些前体组装成复杂的分子,如蛋白质、多糖、脂质和核酸<ref name=":0">{{cite web|last=Mandal|first=Ananya|date=2009-11-26|title=What is Anabolism?|url=https://www.news-medical.net/life-sciences/What-is-Anabolism.aspx|access-date=2020-07-04|website=News-Medical.net|language=en}}</ref>。
    
生物体的合成代谢根据其细胞中构建分子的来源而有所不同。植物等自养生物可以在细胞中利用二氧化碳和水等简单分子中构建复杂的有机分子(如多糖和蛋白质)。而异养生物则需要更复杂的物质来源(如单糖和氨基酸)才能产生这些复杂的分子。生物可以根据其能量的最终来源进一步分类: 光自养生物和光异养生物从光中获得能量,而化能自养生物和化能异养生物从无机氧化反应中获得能量<ref name=":0" />
 
生物体的合成代谢根据其细胞中构建分子的来源而有所不同。植物等自养生物可以在细胞中利用二氧化碳和水等简单分子中构建复杂的有机分子(如多糖和蛋白质)。而异养生物则需要更复杂的物质来源(如单糖和氨基酸)才能产生这些复杂的分子。生物可以根据其能量的最终来源进一步分类: 光自养生物和光异养生物从光中获得能量,而化能自养生物和化能异养生物从无机氧化反应中获得能量<ref name=":0" />
第170行: 第170行:  
光合作用就是依靠阳光和二氧化碳(CO<sub>2</sub>)合成碳水化合物。在植物中,蓝细菌和藻类的含氧光合作用使水分解,排出氧气。如前所述,这一过程利用光合反应中心产生的ATP和NADPH将CO<sub>2</sub>转化为三磷酸甘油酯,然后再转化为葡萄糖。这个固碳反应作为卡尔文-本森Calvin – Benson 循环的一部分是在RuBisCO酶的催化下进行的<ref>{{cite journal | vauthors = Miziorko HM, Lorimer GH | title = Ribulose-1,5-bisphosphate carboxylase-oxygenase | journal = Annual Review of Biochemistry | volume = 52 | issue =  | pages = 507–35 | year = 1983 | pmid = 6351728 | doi = 10.1146/annurev.bi.52.070183.002451 }}</ref>。植物有三种类型的光合作用:C3固碳、C4固碳和CAM光合作用。它们的不同之处在于二氧化碳进入卡尔文循环的路径不同,C3植物直接固定二氧化碳,而C4和CAM植物首先将二氧化碳吸收到其他化合物中,以适应强烈的阳光和干燥的环境<ref>{{cite journal | vauthors = Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K | title = Crassulacean acid metabolism: plastic, fantastic | journal = Journal of Experimental Botany | volume = 53 | issue = 369 | pages = 569–80 | date = April 2002 | pmid = 11886877 | doi = 10.1093/jexbot/53.369.569 | doi-access = free }}</ref>。
 
光合作用就是依靠阳光和二氧化碳(CO<sub>2</sub>)合成碳水化合物。在植物中,蓝细菌和藻类的含氧光合作用使水分解,排出氧气。如前所述,这一过程利用光合反应中心产生的ATP和NADPH将CO<sub>2</sub>转化为三磷酸甘油酯,然后再转化为葡萄糖。这个固碳反应作为卡尔文-本森Calvin – Benson 循环的一部分是在RuBisCO酶的催化下进行的<ref>{{cite journal | vauthors = Miziorko HM, Lorimer GH | title = Ribulose-1,5-bisphosphate carboxylase-oxygenase | journal = Annual Review of Biochemistry | volume = 52 | issue =  | pages = 507–35 | year = 1983 | pmid = 6351728 | doi = 10.1146/annurev.bi.52.070183.002451 }}</ref>。植物有三种类型的光合作用:C3固碳、C4固碳和CAM光合作用。它们的不同之处在于二氧化碳进入卡尔文循环的路径不同,C3植物直接固定二氧化碳,而C4和CAM植物首先将二氧化碳吸收到其他化合物中,以适应强烈的阳光和干燥的环境<ref>{{cite journal | vauthors = Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K | title = Crassulacean acid metabolism: plastic, fantastic | journal = Journal of Experimental Botany | volume = 53 | issue = 369 | pages = 569–80 | date = April 2002 | pmid = 11886877 | doi = 10.1093/jexbot/53.369.569 | doi-access = free }}</ref>。
   −
在能够光合作用的原核生物中,碳固定的机制更加多样。对它们而言,二氧化碳可以通过Calvin– Benson循环、反向三羧酸循环<ref>{{cite journal | vauthors = Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM | title = Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria | journal = Journal of Bacteriology | volume = 187 | issue = 9 | pages = 3020–7 | date = May 2005 | pmid = 15838028 | pmc = 1082812 | doi = 10.1128/JB.187.9.3020-3027.2005 }}</ref>或乙酰辅酶A的羧化作用得到固定。原核化能自养生物也通过Calvin– Benson环固定CO<sub>2</sub> <ref>{{cite journal | vauthors = Strauss G, Fuchs G | title = Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle | journal = European Journal of Biochemistry | volume = 215 | issue = 3 | pages = 633–43 | date = August 1993 | pmid = 8354269 | doi = 10.1111/j.1432-1033.1993.tb18074.x }}</ref><ref>{{cite journal | vauthors = Wood HG | title = Life with CO or CO2 and H2 as a source of carbon and energy | journal = FASEB Journal | volume = 5 | issue = 2 | pages = 156–63 | date = February 1991 | pmid = 1900793 | doi = 10.1096/fasebj.5.2.1900793 | s2cid = 45967404 }}</ref>,但它们利用无机化合物的能量来驱动反应<ref>{{cite journal | vauthors = Shively JM, van Keulen G, Meijer WG | title = Something from almost nothing: carbon dioxide fixation in chemoautotrophs | journal = Annual Review of Microbiology | volume = 52 | issue =  | pages = 191–230 | year = 1998 | pmid = 9891798 | doi = 10.1146/annurev.micro.52.1.191 }}</ref>。
+
在能够光合作用的原核生物中,碳固定的机制更加多样。对它们而言,二氧化碳可以通过Calvin– Benson循环、反向三羧酸循环<ref>{{cite journal | vauthors = Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM | title = Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria | journal = Journal of Bacteriology | volume = 187 | issue = 9 | pages = 3020–7 | date = May 2005 | pmid = 15838028 | pmc = 1082812 | doi = 10.1128/JB.187.9.3020-3027.2005 }}</ref>或乙酰辅酶A的羧化作用得到固定。原核化能自养生物也通过Calvin– Benson环固定CO<sub>2</sub> <ref>{{cite journal | vauthors = Strauss G, Fuchs G | title = Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle | journal = European Journal of Biochemistry | volume = 215 | issue = 3 | pages = 633–43 | date = August 1993 | pmid = 8354269 | doi = 10.1111/j.1432-1033.1993.tb18074.x }}</ref><ref>{{cite journal | vauthors = Wood HG | title = Life with CO or CO2 and H2 as a source of carbon and energy | journal = FASEB Journal | volume = 5 | issue = 2 | pages = 156–63 | date = February 1991 | pmid = 1900793 | doi = 10.1096/fasebj.5.2.1900793 }}</ref>,但它们利用无机化合物的能量来驱动反应<ref>{{cite journal | vauthors = Shively JM, van Keulen G, Meijer WG | title = Something from almost nothing: carbon dioxide fixation in chemoautotrophs | journal = Annual Review of Microbiology | volume = 52 | issue =  | pages = 191–230 | year = 1998 | pmid = 9891798 | doi = 10.1146/annurev.micro.52.1.191 }}</ref>。
    
===碳水化合物和聚糖 ===
 
===碳水化合物和聚糖 ===
 
更多信息:糖异生,乙醛酸循环,糖异生和糖基化
 
更多信息:糖异生,乙醛酸循环,糖异生和糖基化
   −
在碳水化合物合成代谢过程中,简单的有机酸可转化为葡萄糖等单糖,再用于合成淀粉等多糖。由丙酮酸、乳酸、甘油、3-磷酸甘油酸和氨基酸等化合物生成葡萄糖称为葡萄糖异生。糖异生作用通过一系列中间产物将丙酮酸转化为葡萄糖-6-磷酸,其中许多中间产物与糖酵解过程相同<ref name=Bouche/>。然而,这一途径并不是简单的糖酵解逆向运行,因为有几个步骤是由非糖酵解酶催化的。这很重要,因为它使得葡萄糖的形成和分解可以分别被调节,而且防止了两条途径在无效循环中同时运行<ref>{{cite journal | vauthors = Boiteux A, Hess B | title = Design of glycolysis | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 293 | issue = 1063 | pages = 5–22 | date = June 1981 | pmid = 6115423 | doi = 10.1098/rstb.1981.0056 | doi-access = free | bibcode = 1981RSPTB.293....5B }}</ref><ref>{{cite journal | vauthors = Pilkis SJ, el-Maghrabi MR, Claus TH | title = Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics | journal = Diabetes Care | volume = 13 | issue = 6 | pages = 582–99 | date = June 1990 | pmid = 2162755 | doi = 10.2337/diacare.13.6.582 | s2cid = 44741368 }}</ref>。
+
在碳水化合物合成代谢过程中,简单的有机酸可转化为葡萄糖等单糖,再用于合成淀粉等多糖。由丙酮酸、乳酸、甘油、3-磷酸甘油酸和氨基酸等化合物生成葡萄糖称为葡萄糖异生。糖异生作用通过一系列中间产物将丙酮酸转化为葡萄糖-6-磷酸,其中许多中间产物与糖酵解过程相同<ref name=Bouche/>。然而,这一途径并不是简单的糖酵解逆向运行,因为有几个步骤是由非糖酵解酶催化的。这很重要,因为它使得葡萄糖的形成和分解可以分别被调节,而且防止了两条途径在无效循环中同时运行<ref>{{cite journal | vauthors = Boiteux A, Hess B | title = Design of glycolysis | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 293 | issue = 1063 | pages = 5–22 | date = June 1981 | pmid = 6115423 | doi = 10.1098/rstb.1981.0056 | doi-access = free | bibcode = 1981RSPTB.293....5B }}</ref><ref>{{cite journal | vauthors = Pilkis SJ, el-Maghrabi MR, Claus TH | title = Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics | journal = Diabetes Care | volume = 13 | issue = 6 | pages = 582–99 | date = June 1990 | pmid = 2162755 | doi = 10.2337/diacare.13.6.582 }}</ref>。
   −
虽然脂肪是储存能量的一种常见方式,但在脊椎动物(如人类)体内储存的脂肪酸不能通过葡萄糖异生作用转化为葡萄糖,因为这些生物不能将乙酰辅酶A转化为丙酮酸;植物有必要的酶催化机制,而动物没有<ref name="Ensign">{{cite journal | vauthors = Ensign SA | title = Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation | journal = Molecular Microbiology | volume = 61 | issue = 2 | pages = 274–6 | date = July 2006 | pmid = 16856935 | doi = 10.1111/j.1365-2958.2006.05247.x | s2cid = 39986630 }}</ref>。因此,在长期饥饿后,脊椎动物需要从脂肪酸中产生酮体,以取代大脑等不能代谢脂肪酸的组织中的葡萄糖。在其他生物体如植物和细菌中,这个代谢问题是靠乙醛酸循环来解决的<ref>{{cite journal | vauthors = Finn PF, Dice JF | title = Proteolytic and lipolytic responses to starvation | journal = Nutrition | volume = 22 | issue = 7–8 | pages = 830–44 | year = 2006 | pmid = 16815497 | doi = 10.1016/j.nut.2006.04.008 }}</ref> 。乙醛酸循环绕过三羧酸循环中的脱羧步骤,并将乙酰辅酶a转化为草酰乙酸,在那里它可以用来生产葡萄糖。除了脂肪<ref name="Ensign" /><ref name="Kornberg">{{cite journal | vauthors = Kornberg HL, Krebs HA | title = Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle | journal = Nature | volume = 179 | issue = 4568 | pages = 988–91 | date = May 1957 | pmid = 13430766 | doi = 10.1038/179988a0 | s2cid = 40858130 | bibcode = 1957Natur.179..988K }}</ref>,葡萄糖也作为一种能量资源储存在大多数组织中,一般会通过它的糖化来维持血液中的葡萄糖水平<ref>{{cite journal|last1=Evans|first1=Rhys D.|last2=Heather|first2=Lisa C. | name-list-style = vanc |date=June 2016|title=Metabolic pathways and abnormalities|journal=Surgery (Oxford)|volume=34|issue=6|pages=266–272|doi=10.1016/j.mpsur.2016.03.010|issn=0263-9319|url=https://ora.ox.ac.uk/objects/uuid:84c0a8e7-38e9-4de2-ba19-9f129a07987a}}</ref> 。
+
虽然脂肪是储存能量的一种常见方式,但在脊椎动物(如人类)体内储存的脂肪酸不能通过葡萄糖异生作用转化为葡萄糖,因为这些生物不能将乙酰辅酶A转化为丙酮酸;植物有必要的酶催化机制,而动物没有<ref name="Ensign">{{cite journal | vauthors = Ensign SA | title = Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation | journal = Molecular Microbiology | volume = 61 | issue = 2 | pages = 274–6 | date = July 2006 | pmid = 16856935 | doi = 10.1111/j.1365-2958.2006.05247.x }}</ref>。因此,在长期饥饿后,脊椎动物需要从脂肪酸中产生酮体,以取代大脑等不能代谢脂肪酸的组织中的葡萄糖。在其他生物体如植物和细菌中,这个代谢问题是靠乙醛酸循环来解决的<ref>{{cite journal | vauthors = Finn PF, Dice JF | title = Proteolytic and lipolytic responses to starvation | journal = Nutrition | volume = 22 | issue = 7–8 | pages = 830–44 | year = 2006 | pmid = 16815497 | doi = 10.1016/j.nut.2006.04.008 }}</ref> 。乙醛酸循环绕过三羧酸循环中的脱羧步骤,并将乙酰辅酶a转化为草酰乙酸,在那里它可以用来生产葡萄糖。除了脂肪<ref name="Ensign" /><ref name="Kornberg">{{cite journal | vauthors = Kornberg HL, Krebs HA | title = Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle | journal = Nature | volume = 179 | issue = 4568 | pages = 988–91 | date = May 1957 | pmid = 13430766 | doi = 10.1038/179988a0 | bibcode = 1957Natur.179..988K }}</ref>,葡萄糖也作为一种能量资源储存在大多数组织中,一般会通过它的糖化来维持血液中的葡萄糖水平<ref>{{cite journal|last1=Evans|first1=Rhys D.|last2=Heather|first2=Lisa C.|date=June 2016|title=Metabolic pathways and abnormalities|journal=Surgery (Oxford)|volume=34|issue=6|pages=266–272|doi=10.1016/j.mpsur.2016.03.010|issn=0263-9319|url=https://ora.ox.ac.uk/objects/uuid:84c0a8e7-38e9-4de2-ba19-9f129a07987a}}</ref> 。
   −
多糖和聚糖是在糖基转移酶作用下,将单糖从活性糖-磷酸盐供体(如尿苷二磷酸葡萄糖(UDP-Glc))依次加入到生长中的多糖的受体羟基上形成的。由于底物环上的任何羟基都可以作为受体,所以产生的多糖会有直链或支链结构<ref>{{cite book |last1=Freeze|first1=Hudson H. | name-list-style = vanc | chapter =Glycosylation Precursors|date=2015|url=http://www.ncbi.nlm.nih.gov/books/NBK453043/| title = Essentials of Glycobiology|editor-last=Varki|editor-first=Ajit|edition=3rd|place=Cold Spring Harbor (NY)|publisher=Cold Spring Harbor Laboratory Press|pmid=28876856|access-date=2020-07-08|last2=Hart|first2=Gerald W.|last3=Schnaar|first3=Ronald L.|doi=10.1101/glycobiology.3e.005 |doi-broken-date=1 November 2020 |editor2-last=Cummings|editor2-first=Richard D.|editor3-last=Esko|editor3-first=Jeffrey D.|editor4-last=Stanley|editor4-first=Pamela }}</ref>。产生的多糖本身具有结构或代谢功能,还可以通过低聚糖转移酶转移到脂质和蛋白质中<ref>{{cite journal | vauthors = Opdenakker G, Rudd PM, Ponting CP, Dwek RA | title = Concepts and principles of glycobiology | journal = FASEB Journal | volume = 7 | issue = 14 | pages = 1330–7 | date = November 1993 | pmid = 8224606 | doi = 10.1096/fasebj.7.14.8224606 | s2cid = 10388991 }}</ref><ref>{{cite journal | vauthors = McConville MJ, Menon AK | title = Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids (review) | journal = Molecular Membrane Biology | volume = 17 | issue = 1 | pages = 1–16 | year = 2000 | pmid = 10824734 | doi = 10.1080/096876800294443 | doi-access = free }}</ref>。
+
多糖和聚糖是在糖基转移酶作用下,将单糖从活性糖-磷酸盐供体(如尿苷二磷酸葡萄糖(UDP-Glc))依次加入到生长中的多糖的受体羟基上形成的。由于底物环上的任何羟基都可以作为受体,所以产生的多糖会有直链或支链结构<ref>{{cite book |last1=Freeze|first1=Hudson H. | name-list-style = vanc | chapter =Glycosylation Precursors|date=2015|url=http://www.ncbi.nlm.nih.gov/books/NBK453043/| title = Essentials of Glycobiology|editor-last=Varki|editor-first=Ajit|edition=3rd|place=Cold Spring Harbor (NY)|publisher=Cold Spring Harbor Laboratory Press|access-date=2020-07-08|last2=Hart|first2=Gerald W.|last3=Schnaar|first3=Ronald L. |doi-broken-date=1 November 2020 |editor2-last=Cummings|editor2-first=Richard D.|editor3-last=Esko|editor3-first=Jeffrey D.|editor4-last=Stanley|editor4-first=Pamela }}</ref>。产生的多糖本身具有结构或代谢功能,还可以通过低聚糖转移酶转移到脂质和蛋白质中<ref>{{cite journal | vauthors = Opdenakker G, Rudd PM, Ponting CP, Dwek RA | title = Concepts and principles of glycobiology | journal = FASEB Journal | volume = 7 | issue = 14 | pages = 1330–7 | date = November 1993 | pmid = 8224606 | doi = 10.1096/fasebj.7.14.8224606 }}</ref><ref>{{cite journal | vauthors = McConville MJ, Menon AK | title = Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids (review) | journal = Molecular Membrane Biology | volume = 17 | issue = 1 | pages = 1–16 | year = 2000 | pmid = 10824734 | doi = 10.1080/096876800294443 | doi-access = free }}</ref>。
    
===脂肪酸,类异戊二烯和固醇===
 
===脂肪酸,类异戊二烯和固醇===
第187行: 第187行:  
[[File:Sterol synthesis.svg|thumb|right|upright=1.6|具有中间体[[异戊烯基焦磷酸酯]](IPP),[[二甲基烯丙基焦磷酸酯]](DMAPP),[[香叶基焦磷酸酯]](GPP)和[[角鲨烯的类固醇]]合成途径的简化版本。为了清晰起见,省略了一些中间步骤。]]
 
[[File:Sterol synthesis.svg|thumb|right|upright=1.6|具有中间体[[异戊烯基焦磷酸酯]](IPP),[[二甲基烯丙基焦磷酸酯]](DMAPP),[[香叶基焦磷酸酯]](GPP)和[[角鲨烯的类固醇]]合成途径的简化版本。为了清晰起见,省略了一些中间步骤。]]
   −
脂肪酸是由脂肪酸合成酶聚合并还原乙酰辅酶A单元制成的。脂肪酸中的酰基链通过一些反应的循环得以延伸,这些反应包括:添加酰基,将其还原为醇,脱水成烯烃基团,然后再还原为烷烃基团。脂肪酸生物合成的酶可以分为两类:在动物和真菌中,所有脂肪酸合成酶的反应都是由单一的多功能I型蛋白来完成的<ref>{{cite journal | vauthors = Chirala SS, Wakil SJ | title = Structure and function of animal fatty acid synthase | journal = Lipids | volume = 39 | issue = 11 | pages = 1045–53 | date = November 2004 | pmid = 15726818 | doi = 10.1007/s11745-004-1329-9 | s2cid = 4043407 }}</ref>,而在植物的质体和细菌中,则由单独的II型酶来完成每一步<ref>{{cite journal | vauthors = White SW, Zheng J, Zhang YM | title = The structural biology of type II fatty acid biosynthesis | journal = Annual Review of Biochemistry | volume = 74 | issue =  | pages = 791–831 | year = 2005 | pmid = 15952903 | doi = 10.1146/annurev.biochem.74.082803.133524 }}</ref><ref>{{cite journal | vauthors = Ohlrogge JB, Jaworski JG | title = Regulation of Fatty Acid Synthesis | journal = Annual Review of Plant Physiology and Plant Molecular Biology | volume = 48 | issue =  | pages = 109–136 | date = June 1997 | pmid = 15012259 | doi = 10.1146/annurev.arplant.48.1.109 | s2cid = 46348092 }}</ref>。
+
脂肪酸是由脂肪酸合成酶聚合并还原乙酰辅酶A单元制成的。脂肪酸中的酰基链通过一些反应的循环得以延伸,这些反应包括:添加酰基,将其还原为醇,脱水成烯烃基团,然后再还原为烷烃基团。脂肪酸生物合成的酶可以分为两类:在动物和真菌中,所有脂肪酸合成酶的反应都是由单一的多功能I型蛋白来完成的<ref>{{cite journal | vauthors = Chirala SS, Wakil SJ | title = Structure and function of animal fatty acid synthase | journal = Lipids | volume = 39 | issue = 11 | pages = 1045–53 | date = November 2004 | pmid = 15726818 | doi = 10.1007/s11745-004-1329-9 }}</ref>,而在植物的质体和细菌中,则由单独的II型酶来完成每一步<ref>{{cite journal | vauthors = White SW, Zheng J, Zhang YM | title = The structural biology of type II fatty acid biosynthesis | journal = Annual Review of Biochemistry | volume = 74 | issue =  | pages = 791–831 | year = 2005 | pmid = 15952903 | doi = 10.1146/annurev.biochem.74.082803.133524 }}</ref><ref>{{cite journal | vauthors = Ohlrogge JB, Jaworski JG | title = Regulation of Fatty Acid Synthesis | journal = Annual Review of Plant Physiology and Plant Molecular Biology | volume = 48 | issue =  | pages = 109–136 | date = June 1997 | pmid = 15012259 | doi = 10.1146/annurev.arplant.48.1.109 }}</ref>。
   −
萜烯和异戊二烯是一大类脂类,包括类胡萝卜素,也是最大的一类植物天然产品<ref>{{cite journal | vauthors = Dubey VS, Bhalla R, Luthra R | title = An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants | journal = Journal of Biosciences | volume = 28 | issue = 5 | pages = 637–46 | date = September 2003 | pmid = 14517367 | doi = 10.1007/BF02703339 | url = http://www.ias.ac.in/jbiosci/sep2003/637.pdf | url-status = dead | s2cid = 27523830 | archive-url = https://web.archive.org/web/20070415213325/http://www.ias.ac.in/jbiosci/sep2003/637.pdf | df =  | archive-date = 15 April 2007 }}</ref>。这些化合物是由反应性前体焦磷酸异戊烯酯和焦磷酸二甲基烯丙基酯所提供的异戊二烯单元组装和改性而成。这些前体可以靠不同的途径制造<ref name=Kuzuyama>{{cite journal | vauthors = Kuzuyama T, Seto H | title = Diversity of the biosynthesis of the isoprene units | journal = Natural Product Reports | volume = 20 | issue = 2 | pages = 171–83 | date = April 2003 | pmid = 12735695 | doi = 10.1039/b109860h }}</ref>。在动物和古生物中,甲戊二酸途径从乙酰辅酶A产生这些化合物<ref>{{cite journal | vauthors = Grochowski LL, Xu H, White RH | title = Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate | journal = Journal of Bacteriology | volume = 188 | issue = 9 | pages = 3192–8 | date = May 2006 | pmid = 16621811 | pmc = 1447442 | doi = 10.1128/JB.188.9.3192-3198.2006 }}</ref>,而在植物和细菌中,非甲戊二酸途径使用丙酮酸和甘油醛3-磷酸作为底物。使用这些活化的异戊二烯供体的一个重要反应是固醇的生物合成<ref name=Kuzuyama/><ref>{{cite journal | vauthors = Lichtenthaler HK | title = The 1-Deoxy-D-Xylulose-5-Phosphate Pathway of Isoprenoid Biosynthesis in Plants | journal = Annual Review of Plant Physiology and Plant Molecular Biology | volume = 50 | issue =  | pages = 47–65 | date = June 1999 | pmid = 15012203 | doi = 10.1146/annurev.arplant.50.1.47 }}</ref>。在该反应中,异戊二烯单元连接在一起,制成角鲨烯,然后折叠起来形成一组环,制成羊毛固醇<ref name=Schroepfer>{{cite journal | vauthors = Schroepfer GJ | title = Sterol biosynthesis | journal = Annual Review of Biochemistry | volume = 50 | issue =  | pages = 585–621 | year = 1981 | pmid = 7023367 | doi = 10.1146/annurev.bi.50.070181.003101 }}</ref>。羊毛固醇随后可转化为其他固醇,如胆固醇和麦角固醇<ref name=Schroepfer/><ref>{{cite journal | vauthors = Lees ND, Skaggs B, Kirsch DR, Bard M | title = Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review | journal = Lipids | volume = 30 | issue = 3 | pages = 221–6 | date = March 1995 | pmid = 7791529 | doi = 10.1007/BF02537824 | s2cid = 4019443 }}</ref>。
+
萜烯和异戊二烯是一大类脂类,包括类胡萝卜素,也是最大的一类植物天然产品<ref>{{cite journal | vauthors = Dubey VS, Bhalla R, Luthra R | title = An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants | journal = Journal of Biosciences | volume = 28 | issue = 5 | pages = 637–46 | date = September 2003 | pmid = 14517367 | doi = 10.1007/BF02703339 | url = http://www.ias.ac.in/jbiosci/sep2003/637.pdf | url-status = dead | archive-url = https://web.archive.org/web/20070415213325/http://www.ias.ac.in/jbiosci/sep2003/637.pdf | df =  | archive-date = 15 April 2007 }}</ref>。这些化合物是由反应性前体焦磷酸异戊烯酯和焦磷酸二甲基烯丙基酯所提供的异戊二烯单元组装和改性而成。这些前体可以靠不同的途径制造<ref name=Kuzuyama>{{cite journal | vauthors = Kuzuyama T, Seto H | title = Diversity of the biosynthesis of the isoprene units | journal = Natural Product Reports | volume = 20 | issue = 2 | pages = 171–83 | date = April 2003 | pmid = 12735695 | doi = 10.1039/b109860h }}</ref>。在动物和古生物中,甲戊二酸途径从乙酰辅酶A产生这些化合物<ref>{{cite journal | vauthors = Grochowski LL, Xu H, White RH | title = Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate | journal = Journal of Bacteriology | volume = 188 | issue = 9 | pages = 3192–8 | date = May 2006 | pmid = 16621811 | pmc = 1447442 | doi = 10.1128/JB.188.9.3192-3198.2006 }}</ref>,而在植物和细菌中,非甲戊二酸途径使用丙酮酸和甘油醛3-磷酸作为底物。使用这些活化的异戊二烯供体的一个重要反应是固醇的生物合成<ref name=Kuzuyama/><ref>{{cite journal | vauthors = Lichtenthaler HK | title = The 1-Deoxy-D-Xylulose-5-Phosphate Pathway of Isoprenoid Biosynthesis in Plants | journal = Annual Review of Plant Physiology and Plant Molecular Biology | volume = 50 | issue =  | pages = 47–65 | date = June 1999 | pmid = 15012203 | doi = 10.1146/annurev.arplant.50.1.47 }}</ref>。在该反应中,异戊二烯单元连接在一起,制成角鲨烯,然后折叠起来形成一组环,制成羊毛固醇<ref name=Schroepfer>{{cite journal | vauthors = Schroepfer GJ | title = Sterol biosynthesis | journal = Annual Review of Biochemistry | volume = 50 | issue =  | pages = 585–621 | year = 1981 | pmid = 7023367 | doi = 10.1146/annurev.bi.50.070181.003101 }}</ref>。羊毛固醇随后可转化为其他固醇,如胆固醇和麦角固醇<ref name=Schroepfer/><ref>{{cite journal | vauthors = Lees ND, Skaggs B, Kirsch DR, Bard M | title = Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review | journal = Lipids | volume = 30 | issue = 3 | pages = 221–6 | date = March 1995 | pmid = 7791529 | doi = 10.1007/BF02537824 }}</ref>。
    
===蛋白质类 ===
 
===蛋白质类 ===
第206行: 第206行:  
更多信息:异生物质代谢,药物代谢,酒精代谢和抗氧化剂
 
更多信息:异生物质代谢,药物代谢,酒精代谢和抗氧化剂
   −
所有的生物都不断地接触到它们不能进食的化合物,如果它们在细胞中积累这些化合物就会被伤害,因为它们没有新陈代谢功能。这些具有潜在破坏性的化合物被称为异生物质<ref>{{cite journal | vauthors = Testa B, Krämer SD | title = The biochemistry of drug metabolism--an introduction: part 1. Principles and overview | journal = Chemistry & Biodiversity | volume = 3 | issue = 10 | pages = 1053–101 | date = October 2006 | pmid = 17193224 | doi = 10.1002/cbdv.200690111 | s2cid = 28872968 }}</ref>。合成药物、天然毒物和抗生素等异生物质是通过一系列异生物质代谢酶来解毒的。在人体中,这些酶包括细胞色素 P450氧化酶<ref>{{cite journal | vauthors = Danielson PB | title = The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans | journal = Current Drug Metabolism | volume = 3 | issue = 6 | pages = 561–97 | date = December 2002 | pmid = 12369887 | doi = 10.2174/1389200023337054 }}</ref>、UDP-葡萄糖醛酸转移酶<ref>{{cite journal | vauthors = King CD, Rios GR, Green MD, Tephly TR | title = UDP-glucuronosyltransferases | journal = Current Drug Metabolism | volume = 1 | issue = 2 | pages = 143–61 | date = September 2000 | pmid = 11465080 | doi = 10.2174/1389200003339171 }}</ref>和谷胱甘肽 s- 转移酶。这套酶系统的作用分为三个阶段<ref>{{cite journal | vauthors = Sheehan D, Meade G, Foley VM, Dowd CA | title = Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily | journal = The Biochemical Journal | volume = 360 | issue = Pt 1 | pages = 1–16 | date = November 2001 | pmid = 11695986 | pmc = 1222196 | doi = 10.1042/0264-6021:3600001 }}</ref>,首先氧化异生物质(第一阶段) ,然后将水溶性基团共轭到分子上(第二阶段)。经过降解的水溶性异生物质随后会从细胞中泵出,对多细胞生物来说,还会在排出之前进一步代谢(第三阶段)。在生态学中,这些反应在微生物对污染物的生物降解以及污染土地和溢油的生物修复中尤为重要<ref>{{cite journal | vauthors = Galvão TC, Mohn WW, de Lorenzo V | title = Exploring the microbial biodegradation and biotransformation gene pool | journal = Trends in Biotechnology | volume = 23 | issue = 10 | pages = 497–506 | date = October 2005 | pmid = 16125262 | doi = 10.1016/j.tibtech.2005.08.002 }}</ref>。这些微生物反应中有许多是与多细胞生物相同的,但是由于微生物种类的惊人多样性,这些微生物能够处理比多细胞生物更广泛的异生物质,甚至能够降解有机氯化合物等持久性有机污染物<ref>{{cite journal | vauthors = Janssen DB, Dinkla IJ, Poelarends GJ, Terpstra P | title = Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities | journal = Environmental Microbiology | volume = 7 | issue = 12 | pages = 1868–82 | date = December 2005 | pmid = 16309386 | doi = 10.1111/j.1462-2920.2005.00966.x | url = https://pure.rug.nl/ws/files/3623678/2005EnvironMicrobiolJanssen.pdf }}</ref>
+
所有的生物都不断地接触到它们不能进食的化合物,如果它们在细胞中积累这些化合物就会被伤害,因为它们没有新陈代谢功能。这些具有潜在破坏性的化合物被称为异生物质<ref>{{cite journal | vauthors = Testa B, Krämer SD | title = The biochemistry of drug metabolism--an introduction: part 1. Principles and overview | journal = Chemistry & Biodiversity | volume = 3 | issue = 10 | pages = 1053–101 | date = October 2006 | pmid = 17193224 | doi = 10.1002/cbdv.200690111 }}</ref>。合成药物、天然毒物和抗生素等异生物质是通过一系列异生物质代谢酶来解毒的。在人体中,这些酶包括细胞色素 P450氧化酶<ref>{{cite journal | vauthors = Danielson PB | title = The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans | journal = Current Drug Metabolism | volume = 3 | issue = 6 | pages = 561–97 | date = December 2002 | pmid = 12369887 | doi = 10.2174/1389200023337054 }}</ref>、UDP-葡萄糖醛酸转移酶<ref>{{cite journal | vauthors = King CD, Rios GR, Green MD, Tephly TR | title = UDP-glucuronosyltransferases | journal = Current Drug Metabolism | volume = 1 | issue = 2 | pages = 143–61 | date = September 2000 | pmid = 11465080 | doi = 10.2174/1389200003339171 }}</ref>和谷胱甘肽 s- 转移酶。这套酶系统的作用分为三个阶段<ref>{{cite journal | vauthors = Sheehan D, Meade G, Foley VM, Dowd CA | title = Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily | journal = The Biochemical Journal | volume = 360 | issue = Pt 1 | pages = 1–16 | date = November 2001 | pmid = 11695986 | pmc = 1222196 | doi = 10.1042/0264-6021:3600001 }}</ref>,首先氧化异生物质(第一阶段) ,然后将水溶性基团共轭到分子上(第二阶段)。经过降解的水溶性异生物质随后会从细胞中泵出,对多细胞生物来说,还会在排出之前进一步代谢(第三阶段)。在生态学中,这些反应在微生物对污染物的生物降解以及污染土地和溢油的生物修复中尤为重要<ref>{{cite journal | vauthors = Galvão TC, Mohn WW, de Lorenzo V | title = Exploring the microbial biodegradation and biotransformation gene pool | journal = Trends in Biotechnology | volume = 23 | issue = 10 | pages = 497–506 | date = October 2005 | pmid = 16125262 | doi = 10.1016/j.tibtech.2005.08.002 }}</ref>。这些微生物反应中有许多是与多细胞生物相同的,但是由于微生物种类的惊人多样性,这些微生物能够处理比多细胞生物更广泛的异生物质,甚至能够降解有机氯化合物等持久性有机污染物<ref>{{cite journal | vauthors = Janssen DB, Dinkla IJ, Poelarends GJ, Terpstra P | title = Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities | journal = Environmental Microbiology | volume = 7 | issue = 12 | pages = 1868–82 | date = December 2005 | pmid = 16309386 | doi = 10.1111/j.1462-2920.2005.00966.x | url = https://pure.rug.nl/ws/files/3623678/2005EnvironMicrobiolJanssen.pdf }}</ref>
 
 
   −
对于好氧生物来说,一个相关的问题是氧化应激<ref name=Davies>{{cite journal | vauthors = Davies KJ | title = Oxidative stress: the paradox of aerobic life | journal = Biochemical Society Symposium | volume = 61 | issue =  | pages = 1–31 | year = 1995 | pmid = 8660387 | doi = 10.1042/bss0610001 }}</ref>。这个过程包括氧化磷酸化和蛋白质折叠时二硫键的形成,它产生了活性氧类(如过氧化氢)<ref>{{cite journal | vauthors = Tu BP, Weissman JS | title = Oxidative protein folding in eukaryotes: mechanisms and consequences | journal = The Journal of Cell Biology | volume = 164 | issue = 3 | pages = 341–6 | date = February 2004 | pmid = 14757749 | pmc = 2172237 | doi = 10.1083/jcb.200311055 }}</ref>。这些破坏性的氧化剂被抗氧化代谢物(如谷胱甘肽和酶)和酶(如过氧化氢酶和过氧化物酶)去除<ref name=Sies>{{cite journal | vauthors = Sies H | title = Oxidative stress: oxidants and antioxidants | journal = Experimental Physiology | volume = 82 | issue = 2 | pages = 291–5 | date = March 1997 | pmid = 9129943 | doi = 10.1113/expphysiol.1997.sp004024 | s2cid = 20240552 | url = http://ep.physoc.org/cgi/reprint/82/2/291.pdf | access-date = 9 March 2007 | url-status = dead | archive-url = https://web.archive.org/web/20090325001126/http://ep.physoc.org/cgi/reprint/82/2/291.pdf | archive-date = 25 March 2009 }}</ref><ref name=Vertuani>{{cite journal | vauthors = Vertuani S, Angusti A, Manfredini S | title = The antioxidants and pro-antioxidants network: an overview | journal = Current Pharmaceutical Design | volume = 10 | issue = 14 | pages = 1677–94 | year = 2004 | pmid = 15134565 | doi = 10.2174/1381612043384655 | s2cid = 43713549 }}</ref>。
+
对于好氧生物来说,一个相关的问题是氧化应激<ref name=Davies>{{cite journal | vauthors = Davies KJ | title = Oxidative stress: the paradox of aerobic life | journal = Biochemical Society Symposium | volume = 61 | issue =  | pages = 1–31 | year = 1995 | pmid = 8660387 | doi = 10.1042/bss0610001 }}</ref>。这个过程包括氧化磷酸化和蛋白质折叠时二硫键的形成,它产生了活性氧类(如过氧化氢)<ref>{{cite journal | vauthors = Tu BP, Weissman JS | title = Oxidative protein folding in eukaryotes: mechanisms and consequences | journal = The Journal of Cell Biology | volume = 164 | issue = 3 | pages = 341–6 | date = February 2004 | pmid = 14757749 | pmc = 2172237 | doi = 10.1083/jcb.200311055 }}</ref>。这些破坏性的氧化剂被抗氧化代谢物(如谷胱甘肽和酶)和酶(如过氧化氢酶和过氧化物酶)去除<ref name=Sies>{{cite journal | vauthors = Sies H | title = Oxidative stress: oxidants and antioxidants | journal = Experimental Physiology | volume = 82 | issue = 2 | pages = 291–5 | date = March 1997 | pmid = 9129943 | doi = 10.1113/expphysiol.1997.sp004024 | url = http://ep.physoc.org/cgi/reprint/82/2/291.pdf | access-date = 9 March 2007 | url-status = dead | archive-url = https://web.archive.org/web/20090325001126/http://ep.physoc.org/cgi/reprint/82/2/291.pdf | archive-date = 25 March 2009 }}</ref><ref name=Vertuani>{{cite journal | vauthors = Vertuani S, Angusti A, Manfredini S | title = The antioxidants and pro-antioxidants network: an overview | journal = Current Pharmaceutical Design | volume = 10 | issue = 14 | pages = 1677–94 | year = 2004 | pmid = 15134565 | doi = 10.2174/1381612043384655 }}</ref>。
    
==生命有机体的热力学 ==
 
==生命有机体的热力学 ==
第219行: 第219行:  
更多信息:代谢途径,代谢控制分析,激素,调节酶和细胞信号转导
 
更多信息:代谢途径,代谢控制分析,激素,调节酶和细胞信号转导
   −
由于大多数生物体的环境是不断变化的,因此它们必须对新陈代谢的反应进行精细的调节,以维持细胞内一系列恒定的条件,这种条件称为稳态<ref>{{cite journal | vauthors = Albert R | title = Scale-free networks in cell biology | journal = Journal of Cell Science | volume = 118 | issue = Pt 21 | pages = 4947–57 | date = November 2005 | pmid = 16254242 | doi = 10.1242/jcs.02714 | arxiv = q-bio/0510054 | s2cid = 3001195 | bibcode = 2005q.bio....10054A }}</ref><ref>{{cite journal | vauthors = Brand MD | title = Regulation analysis of energy metabolism | journal = The Journal of Experimental Biology | volume = 200 | issue = Pt 2 | pages = 193–202 | date = January 1997 | pmid = 9050227 | url = http://jeb.biologists.org/cgi/reprint/200/2/193 }}</ref>。代谢调节也使生物体能够对信号作出反应,并与环境积极互动。有两个密切相关的概念对于理解“代谢途径是如何被控制的”十分重要<ref>{{cite journal | vauthors = Soyer OS, Salathé M, Bonhoeffer S | title = Signal transduction networks: topology, response and biochemical processes | journal = Journal of Theoretical Biology | volume = 238 | issue = 2 | pages = 416–25 | date = January 2006 | pmid = 16045939 | doi = 10.1016/j.jtbi.2005.05.030 }}</ref>。首先,途径中酶的调节是指其活性如何响应信号从而增加和减少。其次,这种酶所施加的控制是指它的活性变化对通路的总体速率(通过通路的通量)的影响<ref name="Salter">{{cite journal | vauthors = Salter M, Knowles RG, Pogson CI | title = Metabolic control | journal = Essays in Biochemistry | volume = 28 | issue =  | pages = 1–12 | year = 1994 | pmid = 7925313 }}</ref>。例如,一种酶可能表现出很大的活性变化(即它是高度受控的),但如果这些变化对某一代谢途径的通量影响不大,那么这种酶就不参与该途径的控制<ref>{{cite journal | vauthors = Westerhoff HV, Groen AK, Wanders RJ | title = Modern theories of metabolic control and their applications (review) | journal = Bioscience Reports | volume = 4 | issue = 1 | pages = 1–22 | date = January 1984 | pmid = 6365197 | doi = 10.1007/BF01120819 | s2cid = 27791605 }}</ref>。
+
由于大多数生物体的环境是不断变化的,因此它们必须对新陈代谢的反应进行精细的调节,以维持细胞内一系列恒定的条件,这种条件称为稳态<ref>{{cite journal | vauthors = Albert R | title = Scale-free networks in cell biology | journal = Journal of Cell Science | volume = 118 | issue = Pt 21 | pages = 4947–57 | date = November 2005 | pmid = 16254242 | doi = 10.1242/jcs.02714 | arxiv = q-bio/0510054 | bibcode = 2005q.bio....10054A }}</ref><ref>{{cite journal | vauthors = Brand MD | title = Regulation analysis of energy metabolism | journal = The Journal of Experimental Biology | volume = 200 | issue = Pt 2 | pages = 193–202 | date = January 1997 | pmid = 9050227 | url = http://jeb.biologists.org/cgi/reprint/200/2/193 }}</ref>。代谢调节也使生物体能够对信号作出反应,并与环境积极互动。有两个密切相关的概念对于理解“代谢途径是如何被控制的”十分重要<ref>{{cite journal | vauthors = Soyer OS, Salathé M, Bonhoeffer S | title = Signal transduction networks: topology, response and biochemical processes | journal = Journal of Theoretical Biology | volume = 238 | issue = 2 | pages = 416–25 | date = January 2006 | pmid = 16045939 | doi = 10.1016/j.jtbi.2005.05.030 }}</ref>。首先,途径中酶的调节是指其活性如何响应信号从而增加和减少。其次,这种酶所施加的控制是指它的活性变化对通路的总体速率(通过通路的通量)的影响<ref name="Salter">{{cite journal | vauthors = Salter M, Knowles RG, Pogson CI | title = Metabolic control | journal = Essays in Biochemistry | volume = 28 | issue =  | pages = 1–12 | year = 1994 | pmid = 7925313 }}</ref>。例如,一种酶可能表现出很大的活性变化(即它是高度受控的),但如果这些变化对某一代谢途径的通量影响不大,那么这种酶就不参与该途径的控制<ref>{{cite journal | vauthors = Westerhoff HV, Groen AK, Wanders RJ | title = Modern theories of metabolic control and their applications (review) | journal = Bioscience Reports | volume = 4 | issue = 1 | pages = 1–22 | date = January 1984 | pmid = 6365197 | doi = 10.1007/BF01120819 }}</ref>。
    
[[File:Insulin glucose metabolism ZP.svg|thumb|right|upright=1.35|胰岛素对葡萄糖摄取和代谢的影响。胰岛素与其受体(1)结合,继而启动许多蛋白质激活级联反应(2)。其中包括:Glut-4转运蛋白向[[质膜]]的转运和葡萄糖的流入(3),[[糖原]]合成(4),[[糖酵解]](5)和[[脂肪酸]]合成(6)。]]
 
[[File:Insulin glucose metabolism ZP.svg|thumb|right|upright=1.35|胰岛素对葡萄糖摄取和代谢的影响。胰岛素与其受体(1)结合,继而启动许多蛋白质激活级联反应(2)。其中包括:Glut-4转运蛋白向[[质膜]]的转运和葡萄糖的流入(3),[[糖原]]合成(4),[[糖酵解]](5)和[[脂肪酸]]合成(6)。]]
第236行: 第236行:  
]]
 
]]
   −
上述代谢的主要途径,如糖酵解和柠檬酸循环,存在于生物的全部三个领域中,并存在于最后的普遍共同祖先中。这种普遍的祖先细胞是原核生物<ref name="SmithE" /><ref>{{cite journal | vauthors = Romano AH, Conway T | title = Evolution of carbohydrate metabolic pathways | journal = Research in Microbiology | volume = 147 | issue = 6–7 | pages = 448–55 | year = 1996 | pmid = 9084754 | doi = 10.1016/0923-2508(96)83998-2 }}</ref>,也许是一种具有广泛的氨基酸、核苷酸、碳水化合物和脂质代谢的产烷菌<ref>{{cite book |author=Koch A |title=How did bacteria come to be? |journal=Adv Microb Physiol |volume=40 |pages=353–99 |year=1998 |pmid=9889982 |doi=10.1016/S0065-2911(08)60135-6 |series=Advances in Microbial Physiology |isbn=978-0-12-027740-7}}</ref><ref>{{cite journal | vauthors = Ouzounis C, Kyrpides N | title = The emergence of major cellular processes in evolution | journal = FEBS Letters | volume = 390 | issue = 2 | pages = 119–23 | date = July 1996 | pmid = 8706840 | doi = 10.1016/0014-5793(96)00631-X | s2cid = 39128865 }}</ref>。在后来的进化过程中,这些古老的途径之所以得以保留,可能是因为这些反应为它们特定的代谢问题提供了最佳解决方案,这些途径(如糖酵解和三羧酸循环)以最少的步骤高效地产生它们的最终产物。最初的基于酶的代谢途径可能是嘌呤核苷酸代谢的一部分<ref name="Ebenhoh" /><ref name="Cascante" />,而之前的代谢途径是远古RNA界的一部分<ref>{{cite journal | vauthors = Caetano-Anollés G, Kim HS, Mittenthal JE | title = The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 104 | issue = 22 | pages = 9358–63 | date = May 2007 | pmid = 17517598 | pmc = 1890499 | doi = 10.1073/pnas.0701214104 | bibcode = 2007PNAS..104.9358C }}</ref>。
+
上述代谢的主要途径,如糖酵解和柠檬酸循环,存在于生物的全部三个领域中,并存在于最后的普遍共同祖先中。这种普遍的祖先细胞是原核生物<ref name="SmithE" /><ref>{{cite journal | vauthors = Romano AH, Conway T | title = Evolution of carbohydrate metabolic pathways | journal = Research in Microbiology | volume = 147 | issue = 6–7 | pages = 448–55 | year = 1996 | pmid = 9084754 | doi = 10.1016/0923-2508(96)83998-2 }}</ref>,也许是一种具有广泛的氨基酸、核苷酸、碳水化合物和脂质代谢的产烷菌<ref>{{cite book |author=Koch A |title=How did bacteria come to be? |journal=Adv Microb Physiol |volume=40 |pages=353–99 |year=1998 |pmid=9889982 |doi=10.1016/S0065-2911(08)60135-6 |series=Advances in Microbial Physiology |isbn=978-0-12-027740-7}}</ref><ref>{{cite journal | vauthors = Ouzounis C, Kyrpides N | title = The emergence of major cellular processes in evolution | journal = FEBS Letters | volume = 390 | issue = 2 | pages = 119–23 | date = July 1996 | pmid = 8706840 | doi = 10.1016/0014-5793(96)00631-X}}</ref>。在后来的进化过程中,这些古老的途径之所以得以保留,可能是因为这些反应为它们特定的代谢问题提供了最佳解决方案,这些途径(如糖酵解和三羧酸循环)以最少的步骤高效地产生它们的最终产物。最初的基于酶的代谢途径可能是嘌呤核苷酸代谢的一部分<ref name="Ebenhoh" /><ref name="Cascante" />,而之前的代谢途径是远古RNA界的一部分<ref>{{cite journal | vauthors = Caetano-Anollés G, Kim HS, Mittenthal JE | title = The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 104 | issue = 22 | pages = 9358–63 | date = May 2007 | pmid = 17517598 | pmc = 1890499 | doi = 10.1073/pnas.0701214104 | bibcode = 2007PNAS..104.9358C }}</ref>。
    
人们提出了许多模型来描述新代谢途径的演变机制。其中包括将新的酶顺序添加到一个短的祖传途径,整个途径的复制和分化,吸纳原有的酶或者把这些机制组装成新的反应途径。这些机制的相对重要性尚不清楚<ref>{{cite journal | vauthors = Schmidt S, Sunyaev S, Bork P, Dandekar T | title = Metabolites: a helping hand for pathway evolution? | journal = Trends in Biochemical Sciences | volume = 28 | issue = 6 | pages = 336–41 | date = June 2003 | pmid = 12826406 | doi = 10.1016/S0968-0004(03)00114-2 }}</ref>,但基因组研究表明,一条途径中的酶很可能有共同的祖先,这意味着许多途径是逐步进化而来的,途径中预先存在的步骤创造出了新的功能。另一种模型来自于追踪代谢网络中蛋白质结构演化的研究<ref>{{cite journal | vauthors = Light S, Kraulis P | title = Network analysis of metabolic enzyme evolution in Escherichia coli | journal = BMC Bioinformatics | volume = 5 | pages = 15 | date = February 2004 | pmid = 15113413 | pmc = 394313 | doi = 10.1186/1471-2105-5-15 }} {{cite journal | vauthors = Alves R, Chaleil RA, Sternberg MJ | title = Evolution of enzymes in metabolism: a network perspective | journal = Journal of Molecular Biology | volume = 320 | issue = 4 | pages = 751–70 | date = July 2002 | pmid = 12095253 | doi = 10.1016/S0022-2836(02)00546-6 }}</ref>,它指出酶被普遍利用,生物体借用酶在不同的代谢途径中执行相似的功能(在 MANET 数据库中显而易见)<ref>{{cite journal | vauthors = Kim HS, Mittenthal JE, Caetano-Anollés G | title = MANET: tracing evolution of protein architecture in metabolic networks | journal = BMC Bioinformatics | volume = 7 | pages = 351 | date = July 2006 | pmid = 16854231 | pmc = 1559654 | doi = 10.1186/1471-2105-7-351 }}</ref>。这些征用过程导致了进化酶的嵌合<ref>{{cite journal | vauthors = Teichmann SA, Rison SC, Thornton JM, Riley M, Gough J, Chothia C | title = Small-molecule metabolism: an enzyme mosaic | journal = Trends in Biotechnology | volume = 19 | issue = 12 | pages = 482–6 | date = December 2001 | pmid = 11711174 | doi = 10.1016/S0167-7799(01)01813-3 }}</ref>。第三种可能性是,新陈代谢的某些部分可能作为“模块”存在,可以在不同的途径中重复使用,并对不同的分子执行类似的功能<ref>{{cite journal | vauthors = Spirin V, Gelfand MS, Mironov AA, Mirny LA | title = A metabolic network in the evolutionary context: multiscale structure and modularity | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 23 | pages = 8774–9 | date = June 2006 | pmid = 16731630 | pmc = 1482654 | doi = 10.1073/pnas.0510258103 | bibcode = 2006PNAS..103.8774S }}</ref>。
 
人们提出了许多模型来描述新代谢途径的演变机制。其中包括将新的酶顺序添加到一个短的祖传途径,整个途径的复制和分化,吸纳原有的酶或者把这些机制组装成新的反应途径。这些机制的相对重要性尚不清楚<ref>{{cite journal | vauthors = Schmidt S, Sunyaev S, Bork P, Dandekar T | title = Metabolites: a helping hand for pathway evolution? | journal = Trends in Biochemical Sciences | volume = 28 | issue = 6 | pages = 336–41 | date = June 2003 | pmid = 12826406 | doi = 10.1016/S0968-0004(03)00114-2 }}</ref>,但基因组研究表明,一条途径中的酶很可能有共同的祖先,这意味着许多途径是逐步进化而来的,途径中预先存在的步骤创造出了新的功能。另一种模型来自于追踪代谢网络中蛋白质结构演化的研究<ref>{{cite journal | vauthors = Light S, Kraulis P | title = Network analysis of metabolic enzyme evolution in Escherichia coli | journal = BMC Bioinformatics | volume = 5 | pages = 15 | date = February 2004 | pmid = 15113413 | pmc = 394313 | doi = 10.1186/1471-2105-5-15 }} {{cite journal | vauthors = Alves R, Chaleil RA, Sternberg MJ | title = Evolution of enzymes in metabolism: a network perspective | journal = Journal of Molecular Biology | volume = 320 | issue = 4 | pages = 751–70 | date = July 2002 | pmid = 12095253 | doi = 10.1016/S0022-2836(02)00546-6 }}</ref>,它指出酶被普遍利用,生物体借用酶在不同的代谢途径中执行相似的功能(在 MANET 数据库中显而易见)<ref>{{cite journal | vauthors = Kim HS, Mittenthal JE, Caetano-Anollés G | title = MANET: tracing evolution of protein architecture in metabolic networks | journal = BMC Bioinformatics | volume = 7 | pages = 351 | date = July 2006 | pmid = 16854231 | pmc = 1559654 | doi = 10.1186/1471-2105-7-351 }}</ref>。这些征用过程导致了进化酶的嵌合<ref>{{cite journal | vauthors = Teichmann SA, Rison SC, Thornton JM, Riley M, Gough J, Chothia C | title = Small-molecule metabolism: an enzyme mosaic | journal = Trends in Biotechnology | volume = 19 | issue = 12 | pages = 482–6 | date = December 2001 | pmid = 11711174 | doi = 10.1016/S0167-7799(01)01813-3 }}</ref>。第三种可能性是,新陈代谢的某些部分可能作为“模块”存在,可以在不同的途径中重复使用,并对不同的分子执行类似的功能<ref>{{cite journal | vauthors = Spirin V, Gelfand MS, Mironov AA, Mirny LA | title = A metabolic network in the evolutionary context: multiscale structure and modularity | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 23 | pages = 8774–9 | date = June 2006 | pmid = 16731630 | pmc = 1482654 | doi = 10.1073/pnas.0510258103 | bibcode = 2006PNAS..103.8774S }}</ref>。
   −
除了新的代谢途径的进化,演化也会导致代谢功能的丧失。例如,在某些寄生物中,一些并非生存必需的代谢过程丢失了,而预先形成的氨基酸、核苷酸和碳水化合物可能会从寄主那里被清除<ref>{{cite journal | vauthors = Lawrence JG | title = Common themes in the genome strategies of pathogens | journal = Current Opinion in Genetics & Development | volume = 15 | issue = 6 | pages = 584–8 | date = December 2005 | pmid = 16188434 | doi = 10.1016/j.gde.2005.09.007 }} {{cite journal | vauthors = Wernegreen JJ | title = For better or worse: genomic consequences of intracellular mutualism and parasitism | journal = Current Opinion in Genetics & Development | volume = 15 | issue = 6 | pages = 572–83 | date = December 2005 | pmid = 16230003 | doi = 10.1016/j.gde.2005.09.013 }}</ref>。在内共生生物体中也可以看到类似的代谢能力下降<ref>{{cite journal | vauthors = Pál C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD | title = Chance and necessity in the evolution of minimal metabolic networks | journal = Nature | volume = 440 | issue = 7084 | pages = 667–70 | date = March 2006 | pmid = 16572170 | doi = 10.1038/nature04568 | s2cid = 4424895 | bibcode = 2006Natur.440..667P }}</ref>。
+
除了新的代谢途径的进化,演化也会导致代谢功能的丧失。例如,在某些寄生物中,一些并非生存必需的代谢过程丢失了,而预先形成的氨基酸、核苷酸和碳水化合物可能会从寄主那里被清除<ref>{{cite journal | vauthors = Lawrence JG | title = Common themes in the genome strategies of pathogens | journal = Current Opinion in Genetics & Development | volume = 15 | issue = 6 | pages = 584–8 | date = December 2005 | pmid = 16188434 | doi = 10.1016/j.gde.2005.09.007 }} {{cite journal | vauthors = Wernegreen JJ | title = For better or worse: genomic consequences of intracellular mutualism and parasitism | journal = Current Opinion in Genetics & Development | volume = 15 | issue = 6 | pages = 572–83 | date = December 2005 | pmid = 16230003 | doi = 10.1016/j.gde.2005.09.013 }}</ref>。在内共生生物体中也可以看到类似的代谢能力下降<ref>{{cite journal | vauthors = Pál C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD | title = Chance and necessity in the evolution of minimal metabolic networks | journal = Nature | volume = 440 | issue = 7084 | pages = 667–70 | date = March 2006 | pmid = 16572170 | doi = 10.1038/nature04568 | bibcode = 2006Natur.440..667P }}</ref>。
    
==调查和操纵 ==
 
==调查和操纵 ==
第255行: 第255行:  
这些信息的一个主要技术应用是代谢工程学。在应用中,酵母、植物或细菌等生物体都可经过基因改造,使它们在生物技术方面更有用处,同时有助于生产抗生素等药物或工业化学品(如1,3- 丙二醇和莽草酸)<ref>{{cite journal | vauthors = Thykaer J, Nielsen J | title = Metabolic engineering of beta-lactam production | journal = Metabolic Engineering | volume = 5 | issue = 1 | pages = 56–69 | date = January 2003 | pmid = 12749845 | doi = 10.1016/S1096-7176(03)00003-X }}
 
这些信息的一个主要技术应用是代谢工程学。在应用中,酵母、植物或细菌等生物体都可经过基因改造,使它们在生物技术方面更有用处,同时有助于生产抗生素等药物或工业化学品(如1,3- 丙二醇和莽草酸)<ref>{{cite journal | vauthors = Thykaer J, Nielsen J | title = Metabolic engineering of beta-lactam production | journal = Metabolic Engineering | volume = 5 | issue = 1 | pages = 56–69 | date = January 2003 | pmid = 12749845 | doi = 10.1016/S1096-7176(03)00003-X }}
 
{{cite journal | vauthors = González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P | title = Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol | journal = Metabolic Engineering | volume = 7 | issue = 5–6 | pages = 329–36 | year = 2005 | pmid = 16095939 | doi = 10.1016/j.ymben.2005.06.001 | hdl-access = free | hdl = 10400.14/3388 }}
 
{{cite journal | vauthors = González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P | title = Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol | journal = Metabolic Engineering | volume = 7 | issue = 5–6 | pages = 329–36 | year = 2005 | pmid = 16095939 | doi = 10.1016/j.ymben.2005.06.001 | hdl-access = free | hdl = 10400.14/3388 }}
{{cite journal | vauthors = Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L | display-authors = 6 | title = Metabolic engineering for microbial production of shikimic acid | journal = Metabolic Engineering | volume = 5 | issue = 4 | pages = 277–83 | date = October 2003 | pmid = 14642355 | doi = 10.1016/j.ymben.2003.09.001 }}</ref>。这些基因改造通常旨在减少生产产品所使用的能源,提高产量和减少废物的产生<ref>{{cite journal | vauthors = Koffas M, Roberge C, Lee K, Stephanopoulos G | title = Metabolic engineering | journal = Annual Review of Biomedical Engineering | volume = 1 | issue =  | pages = 535–57 | year = 1999 | pmid = 11701499 | doi = 10.1146/annurev.bioeng.1.1.535 | s2cid = 11814282 }}</ref>。
+
{{cite journal | vauthors = Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L | display-authors = 6 | title = Metabolic engineering for microbial production of shikimic acid | journal = Metabolic Engineering | volume = 5 | issue = 4 | pages = 277–83 | date = October 2003 | pmid = 14642355 | doi = 10.1016/j.ymben.2003.09.001 }}</ref>。这些基因改造通常旨在减少生产产品所使用的能源,提高产量和减少废物的产生<ref>{{cite journal | vauthors = Koffas M, Roberge C, Lee K, Stephanopoulos G | title = Metabolic engineering | journal = Annual Review of Biomedical Engineering | volume = 1 | issue =  | pages = 535–57 | year = 1999 | pmid = 11701499 | doi = 10.1146/annurev.bioeng.1.1.535 }}</ref>。
    
==历史 ==
 
==历史 ==
第270行: 第270行:     
===科学方法的应用 ===
 
===科学方法的应用 ===
新陈代谢的科学研究历史跨越了几个世纪,从早期研究中对动物整体的研究,到现代生物化学中对单个代谢反应的研究。 人类新陈代谢的第一个对照实验是由圣托里奥·桑托里奥 Santorio Santorio于1614年在他的著作《静态医学》中发表的<ref>{{cite journal | vauthors = Eknoyan G | title = Santorio Sanctorius (1561-1636) - founding father of metabolic balance studies | journal = American Journal of Nephrology | volume = 19 | issue = 2 | pages = 226–33 | year = 1999 | pmid = 10213823 | doi = 10.1159/000013455 | s2cid = 32900603 }}</ref>。他描述了自己在进食、睡觉、工作、性交、禁食、饮水和排泄前后的体重。他发现他摄入的大部分食物都是通过他所谓的“无知觉的汗液”流失的。
+
新陈代谢的科学研究历史跨越了几个世纪,从早期研究中对动物整体的研究,到现代生物化学中对单个代谢反应的研究。 人类新陈代谢的第一个对照实验是由圣托里奥·桑托里奥 Santorio Santorio于1614年在他的著作《静态医学》中发表的<ref>{{cite journal | vauthors = Eknoyan G | title = Santorio Sanctorius (1561-1636) - founding father of metabolic balance studies | journal = American Journal of Nephrology | volume = 19 | issue = 2 | pages = 226–33 | year = 1999 | pmid = 10213823 | doi = 10.1159/000013455 }}</ref>。他描述了自己在进食、睡觉、工作、性交、禁食、饮水和排泄前后的体重。他发现他摄入的大部分食物都是通过他所谓的“无知觉的汗液”流失的。
    
[[File:SantoriosMeal.jpg|thumb|right|upright=0.7|Santorio Santorio 在他的杆秤上,来自静态医学,1614年首次发表]]
 
[[File:SantoriosMeal.jpg|thumb|right|upright=0.7|Santorio Santorio 在他的杆秤上,来自静态医学,1614年首次发表]]
   −
在早期的研究中,这些新陈代谢过程的机制还没有确定,人们认为一种生命力量是生命组织的活力<ref>{{cite book|url=https://archive.org/details/historyofscience04willuoft/page/n7/mode/2up|title=Modern Development of the Chemical and Biological Sciences|vauthors=Williams HA|date=1904|publisher=Harper and Brothers|isbn=|series=A History of Science: in Five Volumes|volume=IV|location=New York|pages=184–185|access-date=26 March 2007}}</ref>。19世纪,路易-巴斯德Louis Pasteur 在研究酵母菌将糖发酵成酒精时,得出结论:发酵是由酵母细胞内的物质催化的,他称之为 "发酵物"。他写道:"酒精发酵是与酵母细胞的生命和组织有关的行为,而与细胞的死亡或腐烂无关"。这一发现<ref>{{cite journal | vauthors = Manchester KL | title = Louis Pasteur (1822-1895)--chance and the prepared mind | journal = Trends in Biotechnology | volume = 13 | issue = 12 | pages = 511–5 | date = December 1995 | pmid = 8595136 | doi = 10.1016/S0167-7799(00)89014-9 }}</ref>连同1828年弗里德里希-沃勒Friedrich Wöhler 发表的一篇关于尿素化学合成的论文<ref>{{cite journal | vauthors = Kinne-Saffran E, Kinne RK | title = Vitalism and synthesis of urea. From Friedrich Wöhler to Hans A. Krebs | journal = American Journal of Nephrology | volume = 19 | issue = 2 | pages = 290–4 | year = 1999 | pmid = 10213830 | doi = 10.1159/000013463 | s2cid = 71727190 }}</ref>,因为是第一个完全由无机前体制备的有机化合物而引人注目。这证明了在细胞中发现的有机化合物和化学反应与化学的任何其他部分在原理上没有什么不同。
+
在早期的研究中,这些新陈代谢过程的机制还没有确定,人们认为一种生命力量是生命组织的活力<ref>{{cite book|url=https://archive.org/details/historyofscience04willuoft/page/n7/mode/2up|title=Modern Development of the Chemical and Biological Sciences|vauthors=Williams HA|date=1904|publisher=Harper and Brothers|isbn=|series=A History of Science: in Five Volumes|volume=IV|location=New York|pages=184–185|access-date=26 March 2007}}</ref>。19世纪,路易-巴斯德Louis Pasteur 在研究酵母菌将糖发酵成酒精时,得出结论:发酵是由酵母细胞内的物质催化的,他称之为 "发酵物"。他写道:"酒精发酵是与酵母细胞的生命和组织有关的行为,而与细胞的死亡或腐烂无关"。这一发现<ref>{{cite journal | vauthors = Manchester KL | title = Louis Pasteur (1822-1895)--chance and the prepared mind | journal = Trends in Biotechnology | volume = 13 | issue = 12 | pages = 511–5 | date = December 1995 | pmid = 8595136 | doi = 10.1016/S0167-7799(00)89014-9 }}</ref>连同1828年弗里德里希-沃勒Friedrich Wöhler 发表的一篇关于尿素化学合成的论文<ref>{{cite journal | vauthors = Kinne-Saffran E, Kinne RK | title = Vitalism and synthesis of urea. From Friedrich Wöhler to Hans A. Krebs | journal = American Journal of Nephrology | volume = 19 | issue = 2 | pages = 290–4 | year = 1999 | pmid = 10213830 | doi = 10.1159/000013463 }}</ref>,因为是第一个完全由无机前体制备的有机化合物而引人注目。这证明了在细胞中发现的有机化合物和化学反应与化学的任何其他部分在原理上没有什么不同。
   −
爱德华·布赫纳(Eduard Buchner)在20世纪初发现了酶,从而将新陈代谢的化学反应研究与细胞的生物学研究分离开来,这标志着生物化学的开始<ref>Eduard Buchner's 1907 [http://nobelprize.org/nobel_prizes/chemistry/laureates/1907/buchner-lecture.html Nobel lecture] at http://nobelprize.org Accessed 20 March 2007</ref>。整个20世纪早期,生物化学知识的总量迅速增长。汉斯·克雷布斯(Hans Krebs)是这些现代生物化学家中最多产的一位,他对新陈代谢的研究做出了巨大的贡献。他发现了尿素循环<ref>{{cite journal | vauthors = Kornberg H | title = Krebs and his trinity of cycles | journal = Nature Reviews. Molecular Cell Biology | volume = 1 | issue = 3 | pages = 225–8 | date = December 2000 | pmid = 11252898 | doi = 10.1038/35043073 | s2cid = 28092593 }}</ref>,后来又与 汉斯·科恩伯格(Hans Kornberg)合作,发现了三羧酸循环和乙醛酸循环。色谱、x射线衍射、核磁共振光谱、放射性同位素标记、电子显微镜和分子动力学模拟等新技术的发展极大地助力了现代生化研究<ref>{{cite journal |vauthors=Krebs HA, Henseleit K |title=Untersuchungen über die Harnstoffbildung im tierkorper |journal=Z. Physiol. Chem. |volume=210 |issue=1–2 |pages=33–66 |year=1932 |doi=10.1515/bchm2.1932.210.1-2.33}}<br />
+
爱德华·布赫纳(Eduard Buchner)在20世纪初发现了酶,从而将新陈代谢的化学反应研究与细胞的生物学研究分离开来,这标志着生物化学的开始<ref>Eduard Buchner's 1907 [http://nobelprize.org/nobel_prizes/chemistry/laureates/1907/buchner-lecture.html Nobel lecture] at http://nobelprize.org Accessed 20 March 2007</ref>。整个20世纪早期,生物化学知识的总量迅速增长。汉斯·克雷布斯(Hans Krebs)是这些现代生物化学家中最多产的一位,他对新陈代谢的研究做出了巨大的贡献。他发现了尿素循环<ref>{{cite journal | vauthors = Kornberg H | title = Krebs and his trinity of cycles | journal = Nature Reviews. Molecular Cell Biology | volume = 1 | issue = 3 | pages = 225–8 | date = December 2000 | pmid = 11252898 | doi = 10.1038/35043073 }}</ref>,后来又与 汉斯·科恩伯格(Hans Kornberg)合作,发现了三羧酸循环和乙醛酸循环。色谱、x射线衍射、核磁共振光谱、放射性同位素标记、电子显微镜和分子动力学模拟等新技术的发展极大地助力了现代生化研究<ref>{{cite journal |vauthors=Krebs HA, Henseleit K |title=Untersuchungen über die Harnstoffbildung im tierkorper |journal=Z. Physiol. Chem. |volume=210 |issue=1–2 |pages=33–66 |year=1932 |doi=10.1515/bchm2.1932.210.1-2.33}}<br />
 
{{cite journal | vauthors = Krebs HA, Johnson WA | title = Metabolism of ketonic acids in animal tissues | journal = The Biochemical Journal | volume = 31 | issue = 4 | pages = 645–60 | date = April 1937 | pmid = 16746382 | pmc = 1266984 | doi = 10.1042/bj0310645 }}</ref><ref name="Kornberg" />。这些技术已经能够发现和详细分析细胞中的许多分子和代谢途径。
 
{{cite journal | vauthors = Krebs HA, Johnson WA | title = Metabolism of ketonic acids in animal tissues | journal = The Biochemical Journal | volume = 31 | issue = 4 | pages = 645–60 | date = April 1937 | pmid = 16746382 | pmc = 1266984 | doi = 10.1042/bj0310645 }}</ref><ref name="Kornberg" />。这些技术已经能够发现和详细分析细胞中的许多分子和代谢途径。
   第285行: 第285行:  
* 抗代谢物
 
* 抗代谢物
   −
*基础代谢率
+
* 基础代谢率
    
* 量热学
 
* 量热学
   −
*等温微量热法
+
* 等温微量热法
    
* 先天性代谢缺陷
 
* 先天性代谢缺陷
   −
* 铁硫世界假说(生命起源的假想情景,一个"新陈代谢第一 "的生命起源理论)
+
* 铁硫世界假说(生命起源的假想情景,一个"新陈代谢第一 "的生命起源理论)
 
* 代谢紊乱
 
* 代谢紊乱
*微观生理学
+
* 微观生理学
 
* 主要营养组织
 
* 主要营养组织
 
* 呼吸测量法
 
* 呼吸测量法
第365行: 第365行:  
* {{cite book | vauthors = Nicholls DG, Ferguson SJ | title = Bioenergetics | publisher = Academic Press Inc. | date = 2002 | isbn = 0-12-518121-3 }}
 
* {{cite book | vauthors = Nicholls DG, Ferguson SJ | title = Bioenergetics | publisher = Academic Press Inc. | date = 2002 | isbn = 0-12-518121-3 }}
   −
* {{cite journal | vauthors = Wood HG | title = Life with CO or CO2 and H2 as a source of carbon and energy | journal = FASEB Journal | volume = 5 | issue = 2 | pages = 156–63 | date = February 1991 | pmid = 1900793 | doi = 10.1096/fasebj.5.2.1900793 | s2cid = 45967404 }}
+
* {{cite journal | vauthors = Wood HG | title = Life with CO or CO2 and H2 as a source of carbon and energy | journal = FASEB Journal | volume = 5 | issue = 2 | pages = 156–63 | date = February 1991 | pmid = 1900793 | doi = 10.1096/fasebj.5.2.1900793 }}
    
Databases
 
Databases
1,068

个编辑