更改

添加490字节 、 2021年8月20日 (五) 00:26
无编辑摘要
第15行: 第15行:  
Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions<!--boldface per WP:R#PLA; 'Self-interaction' and 'Self-interactions' redirect here-->. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.
 
Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions<!--boldface per WP:R#PLA; 'Self-interaction' and 'Self-interactions' redirect here-->. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.
   −
重整化是量子场论、场的统计力学和自相似几何结构理论中的一系列技术,这些技术通过改变这些量的值来处理计算量中产生的无穷大,以补偿它们自相互作用的影响。但是,即使在量子场论的环路图中没有无穷大,也可以证明有必要对原拉格朗日函数中出现的质量和场进行重整化。
+
'''<font color="#ff8000"> 重整化 Renormalization </font>'''是'''<font color="#ff8000"> 量子场论 Quantum Field Theory </font>'''、场的'''<font color="#ff8000"> 统计力学 Statistical Mechanics </font>'''和'''<font color="#32cd32"> 自相似 Self-similarity </font>'''几何结构理论中,通过改变计算量的值以抵消其'''<font color="#32cd32"> 自相互作用 Self-interaction </font>''',进而消除计算量中产生的'''<font color="#ff8000"> 无穷大 infinities </font>'''的一系列技巧集合。但是,即使在'''<font color="#ff8000"> 量子场论 Quantum Field Theory </font>'''的'''<font color="#32d32"> 环路图 loop diagrams </font>'''中没有无穷数,对原'''<font color="#32d32"> 拉格朗日场理论 Lagrangian (Field Theory) </font>'''中出现的质量和场进行重整化的必要性也可以得到证明。
     
13

个编辑