更改

删除120字节 、 2021年8月31日 (二) 15:43
无编辑摘要
第11行: 第11行:       −
当描述大距离尺度的参数不同于描述小距离尺度的参数时,重整化指定了理论中参数之间的关系。在像欧洲核子研究中心的高能粒子加速器中,当不理想的质子-质子碰撞与同时临近的可取测量数据相互作用时,就会产生'''连环相撞 Pileup'''的概念。从物理上来说,涉及某一问题的无限量级在累积后可能会导致进一步的无限量。当把时空描述为一个'''时空连续统 Space-time Continuum'''时,某些统计的和量子力学的结构没有得到'''明确定义 Well-defined'''。为了定义它们,或者使它们毫不含糊,连续统的限制必须能够小心地移除不同尺度的晶格的“结构脚手架(?)”。重整化过程的基础要求某些物理量(如电子的质量和电荷)等于观察到的(实验)值。也就是说,物理量的实验值虽能产生实际应用,但由于它们的经验性本质,所观察到的测量代表了量子场论中那些需要从理论基础进行更深入的推导的领域。
+
当描述大距离尺度的参数不同于描述小距离尺度的参数时,重整化指定了理论中参数之间的关系。在像欧洲核子研究中心的高能粒子加速器中,当不理想的质子-质子碰撞与同时临近的可取测量数据相互作用时,就会产生'''连环相撞 Pileup'''的概念。从物理上来说,涉及某一问题的无限量级在累积后可能会导致进一步的无限量。当把时空描述为一个'''时空连续统 Space-time Continuum'''时,某些统计的和量子力学的结构没有得到'''明确定义 Well-defined'''。为了定义它们,或者使它们毫不含糊,连续统的限制必须能够小心地移除不同尺度的晶格的“结构脚手架”。重整化过程的基础要求某些物理量(如电子的质量和电荷)等于观察到的(实验)值。也就是说,物理量的实验值虽能产生实际应用,但由于它们的经验性本质,所观察到的测量代表了量子场论中那些需要从理论基础进行更深入的推导的领域。
      第17行: 第17行:       −
今天,观点发生了转变: 基于尼古拉·博戈柳博夫和 Kenneth Wilson 对'''重整化群 Renormalization Group'''的突破性见解,关注点成为连续尺度间物理量的变化,而相隔较远的尺度通过“有效的“(?)描述彼此相关。广泛来说,所有尺度都以系统的方式联系在一起。同时,与每个尺度相关的实际物理学被适合于每个尺度的特定计算技术提取出来。威尔逊阐明了系统中哪些变量是至关重要的,而哪些又是冗余的。
+
今天,观点发生了转变: 基于尼古拉·博戈柳博夫和 Kenneth Wilson 对'''重整化群 Renormalization Group'''的突破性见解,关注点成为连续尺度间物理量的变化,而相隔较远的尺度通过“有效的“描述彼此相关。广泛来说,所有尺度都以系统的方式联系在一起。同时,与每个尺度相关的实际物理学被适合于每个尺度的特定计算技术提取出来。威尔逊阐明了系统中哪些变量是至关重要的,而哪些又是冗余的。
      第101行: 第101行:       −
第二类发散称为红外发散,由无质量粒子造成的,比如光子。每一个涉及带电粒子的过程都会发射出无限多个波长无限的相干光子,而发射任意有限数量光子的振幅为零。对于光子来说,这些发散过程研究透彻,理解清晰。例如在单圈阶处,顶点函数既有紫外散度也有红外散度。与紫外发散相反,红外发散在理论中不需要参数的重整化。顶点图的红外散度通过包含一个类似于顶点图的图来消除,该图具有以下重要的特征:连接电子(两条腿?)的光子被切断并被两个波长趋向于无穷大的在壳(实)光子所取代;该图图相当于轫致辐射过程。该图被包含在内是必要的,因为没有物理方法来区分在顶点图中流过圈的零能量光子和通过轫致辐射发射的零能量光子。从数学的角度来看,红外发散可以通过假设对参数进行分数阶微分来正则化,例如:
+
第二类发散称为红外发散,由无质量粒子造成的,比如光子。每一个涉及带电粒子的过程都会发射出无限多个波长无限的相干光子,而发射任意有限数量光子的振幅为零。对于光子来说,这些发散过程研究透彻,理解清晰。例如在单圈阶处,顶点函数既有紫外散度也有红外散度。与紫外发散相反,红外发散在理论中不需要参数的重整化。顶点图的红外散度通过包含一个类似于顶点图的图来消除,该图具有以下重要的特征:连接电子(两条腿)的光子被切断并被两个波长趋向于无穷大的在壳(实)光子所取代;该图图相当于轫致辐射过程。该图被包含在内是必要的,因为没有物理方法来区分在顶点图中流过圈的零能量光子和通过轫致辐射发射的零能量光子。从数学的角度来看,红外发散可以通过假设对参数进行分数阶微分来正则化,例如:
    
:<math> \left( p^2 - a^2 \right)^{\frac{1}{2}} </math>
 
:<math> \left( p^2 - a^2 \right)^{\frac{1}{2}} </math>
第157行: 第157行:       −
磁场和耦合常数实际上是裸量(?),因此可见上面的下标如此{{mvar|B}}。通常,裸量相应的拉格朗日项是重整化项的倍数:
+
磁场和耦合常数实际上是裸量,因此可见上面的下标如此{{mvar|B}}。通常,裸量相应的拉格朗日项是重整化项的倍数:
    
:<math>\left(\bar\psi m \psi\right)_B = Z_0 \bar\psi m \psi</math>
 
:<math>\left(\bar\psi m \psi\right)_B = Z_0 \bar\psi m \psi</math>
第179行: 第179行:       −
这个物理常数{{mvar|e}},即电子的电荷,可以用一些特定的实验来定义: 我们把重整化标度设置为与这个实验的能量特征相等,第一个项就会给出我们在实验室中看到的相互作用(只要提供诸如磁矩的高阶修正,从环形图中就可以得到小的、有限的修正)。剩下的就是反项(?)了。如果理论是可重整化的(更多内容见下文) ,就像量子点动力学中一样,环路图的分叉部分都可以分解由成三个或更少分支(?)组成的部分,并且其拥有可以被第二项(或者类似的从{{math|''Z''<sub>0</sub>}} 和{{math|''Z''<sub>3</sub>}}得到的反项)抵消的代数形式。
+
这个物理常数{{mvar|e}},即电子的电荷,可以用一些特定的实验来定义: 我们把重整化标度设置为与这个实验的能量特征相等,第一个项就会给出我们在实验室中看到的相互作用(只要提供诸如磁矩的高阶修正,从环形图中就可以得到小的、有限的修正)。剩下的就是反项了。如果理论是可重整化的(更多内容见下文) ,就像量子点动力学中一样,环路图的分叉部分都可以分解由成三个或更少分支组成的部分,并且其拥有可以被第二项(或者类似的从{{math|''Z''<sub>0</sub>}} 和{{math|''Z''<sub>3</sub>}}得到的反项)抵消的代数形式。
      第185行: 第185行:       −
从历史上看,将“裸项”分解为原始项(?)和反项(?)的做法,早于肯尼思 · 威尔逊对重整化群的洞察。<ref name=Wilson1975>{{cite journal | last=Wilson | first=Kenneth G. |author-link=Kenneth G. Wilson| title=The renormalization group: Critical phenomena and the Kondo problem | journal=Reviews of Modern Physics | publisher=American Physical Society (APS) | volume=47 | issue=4 | date=1975-10-01 | issn=0034-6861 | doi=10.1103/revmodphys.47.773 | pages=773–840| bibcode=1975RvMP...47..773W }}</ref>根据这些重整化群的洞察,在更细节的部分里这种分裂是非自然的也是非物理的,因为问题的所有尺度都是以连续的系统方式进入的(?)。
+
从历史上看,将“裸项”分解为原始项和反项的做法,早于肯尼思 · 威尔逊对重整化群的洞察。<ref name=Wilson1975>{{cite journal | last=Wilson | first=Kenneth G. |author-link=Kenneth G. Wilson| title=The renormalization group: Critical phenomena and the Kondo problem | journal=Reviews of Modern Physics | publisher=American Physical Society (APS) | volume=47 | issue=4 | date=1975-10-01 | issn=0034-6861 | doi=10.1103/revmodphys.47.773 | pages=773–840| bibcode=1975RvMP...47..773W }}</ref>根据这些重整化群的洞察,在更细节的部分里这种分裂是非自然的也是非物理的,因为问题的所有尺度都是以连续的系统方式进入的。
    
=== 运转联轴器 ===
 
=== 运转联轴器 ===
   −
为了尽量减少环路图对给定计算的影响(从而使得计算结果更容易提取) ,可以选择一个接近相互作用中交换的能量和动量的重整化点。然而,重整化点本身并不是一个物理量: 在计算到所有的阶(?)之下,理论物理的预测,原则上应该独立于重整化点的选择,只要它在理论的应用范围内。重整化尺度的变化将影响无环费曼图产生的结果多少,以及来自环图剩余的有限部分的结果的多少。人们可以利用这一事实来计算物理常数随规模变化的有效变化。这种变化由 β 函数编码,这种尺度依赖的一般理论被称为重整化群。
+
为了尽量减少环路图对给定计算的影响(从而使得计算结果更容易提取) ,可以选择一个接近相互作用中交换的能量和动量的重整化点。然而,重整化点本身并不是一个物理量: 在计算到所有的阶之下,理论物理的预测,原则上应该独立于重整化点的选择,只要它在理论的应用范围内。重整化尺度的变化将影响无环费曼图产生的结果多少,以及来自环图剩余的有限部分的结果的多少。人们可以利用这一事实来计算物理常数随规模变化的有效变化。这种变化由 β 函数编码,这种尺度依赖的一般理论被称为重整化群。
      −
通俗地说,粒子物理学家经常说的某些物理“常数”随着相互作用的能量而变化,尽管事实上,重整化标度才是独立量。然而,这种运行(?)确实提供了一种方便的手段来描述场理论在相互作用所涉及的能量变化下的行为变化。例如,由于量子色动力学中的耦合在大能量尺度下变小,该理论表现得更像一个自由理论(?),因为在相互作用中交换的能量变大了---- 这种现象被称为渐近自由(?)。选择一个递增的能量尺度并使用重整化群,可以从简单的费曼图中清楚地看出这一点; 如果不这样做,预测结果将是一样的,但是会出现复杂的高阶抵消。
+
通俗地说,粒子物理学家经常说的某些物理“常数”随着相互作用的能量而变化,尽管事实上,重整化标度才是独立量。然而,这种运行确实提供了一种方便的手段来描述场理论在相互作用所涉及的能量变化下的行为变化。例如,由于量子色动力学中的耦合在大能量尺度下变小,该理论表现得更像一个自由理论,因为在相互作用中交换的能量变大了---- 这种现象被称为渐近自由。选择一个递增的能量尺度并使用重整化群,可以从简单的费曼图中清楚地看出这一点; 如果不这样做,预测结果将是一样的,但是会出现复杂的高阶抵消。
      第317行: 第317行:       −
::在现代社会,如果团体不幸福,那往往是因为他们有那些比幸福甚至生命更重要的无知、习惯、信仰和激情。我发现在我们这个危险的时代,有许多人似乎爱上了痛苦和死亡,以至于当面对希望时,他们会生气起来。他们认为希望是非理性的,坐下来懒洋洋地绝望只是在面对事实而已(?)。
+
::在现代社会,如果团体不幸福,那往往是因为他们有那些比幸福甚至生命更重要的无知、习惯、信仰和激情。我发现在我们这个危险的时代,有许多人似乎爱上了痛苦和死亡,以至于当面对希望时,他们会生气起来。他们认为希望是非理性的,坐下来懒洋洋地绝望只是在面对事实而已。
     
1,068

个编辑