第6行: |
第6行: |
| [[Image:x cubed plot.svg|thumb|Plot of {{math|1=''y'' = ''x''<sup>3</sup>}} with an inflection point at (0,0), which is also a [[stationary point]].|链接=Special:FilePath/X_cubed_plot.svg]] | | [[Image:x cubed plot.svg|thumb|Plot of {{math|1=''y'' = ''x''<sup>3</sup>}} with an inflection point at (0,0), which is also a [[stationary point]].|链接=Special:FilePath/X_cubed_plot.svg]] |
| | | |
− | Plot of with an inflection point at (0,0), which is also a [[stationary point.]] | + | Plot of {{math|1=''y'' = ''x''<sup>3</sup>}} with an inflection point at (0,0), which is also a [[stationary point.]] |
| | | |
− | 拐点在(0,0) ,也是一个[[驻点]]。
| + | {{math|1=''y'' = ''x''<sup>3</sup>}} 的拐点是(0,0) ,也是一个[[驻点]]。 |
| | | |
| {{Cubic graph special points.svg}} | | {{Cubic graph special points.svg}} |
第166行: |
第166行: |
| | | |
| 驻点拐点例子:{{math|(0, 0)}} 为函数 {{math|''y'' {{=}} ''x''<sup>3</sup>}} 的驻点 。切线为 {{mvar|x}} 轴,在{{math|(0, 0)}}与函数相切。 | | 驻点拐点例子:{{math|(0, 0)}} 为函数 {{math|''y'' {{=}} ''x''<sup>3</sup>}} 的驻点 。切线为 {{mvar|x}} 轴,在{{math|(0, 0)}}与函数相切。 |
| + | |
| | | |
| | | |
| An example of a non-stationary point of inflection is the point {{math|(0, 0)}} on the graph of {{math|''y'' {{=}} ''x''<sup>3</sup> + ''ax''}}, for any nonzero {{mvar|a}}. The tangent at the origin is the line {{math|''y'' {{=}} ''ax''}}, which cuts the graph at this point. | | An example of a non-stationary point of inflection is the point {{math|(0, 0)}} on the graph of {{math|''y'' {{=}} ''x''<sup>3</sup> + ''ax''}}, for any nonzero {{mvar|a}}. The tangent at the origin is the line {{math|''y'' {{=}} ''ax''}}, which cuts the graph at this point. |
| | | |
− | An example of a non-stationary point of inflection is the point on the graph of x<sup>3</sup> + ax}}, for any nonzero . The tangent at the origin is the line ax}}, which cuts the graph at this point.
| + | 非驻点拐点例子:{{math|(0, 0)}}为函数 {{math|''y'' {{=}} ''x''<sup>3</sup> + ''ax''}} 的非驻点({{mvar|a}}为任意非零常数)。切线为 {{math|''y'' {{=}} ''ax''}},在{{math|(0, 0)}}与函数相切。 |
| | | |
− | 非驻点拐点例子:{{math|(0, 0)}}为函数 {{math|''y'' {{=}} ''x''<sup>3</sup> + ''ax''}} 的非驻点({{mvar|a}}<nowiki>为任意非零常数),在原点处的切线是ax }}}}</nowiki>
| |
| | | |
| | | |
| ==Functions with discontinuities== | | ==Functions with discontinuities== |
| | | |
− | 非连续性函数
| + | 非连续函数 |
| | | |
| Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function <math>x\mapsto \frac1x</math> is concave for negative {{mvar|x}} and convex for positive {{mvar|x}}, but it has no points of inflection because 0 is not in the domain of the function. | | Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function <math>x\mapsto \frac1x</math> is concave for negative {{mvar|x}} and convex for positive {{mvar|x}}, but it has no points of inflection because 0 is not in the domain of the function. |
第183行: |
第183行: |
| Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function <math>x\mapsto \frac1x</math> is concave for negative and convex for positive , but it has no points of inflection because 0 is not in the domain of the function. | | Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function <math>x\mapsto \frac1x</math> is concave for negative and convex for positive , but it has no points of inflection because 0 is not in the domain of the function. |
| | | |
− | 有些函数在没有拐点的情况下也可改变凹度。他们可以通过改变垂直渐近线或非连续性来实现。例如,函数 < math > x mapsto frac1x </math > 在x为负的时候显凹性,在x为正的时候显凸性。但这个函数不具有拐点,因为0不在其定义域内。
| + | 有些函数虽然没有拐点但也可改变凹度。这些函数可以通过改变垂直渐近线或非连续性来改变凹度。例如,函数 < math > x mapsto frac1x <nowiki></math ></nowiki> 在函数值为负时显凹性,在函数值为正时显凸性。但这个函数不具有拐点,因为0不在其定义域内。 |
| | | |
| | | |