第44行: |
第44行: |
| dN是在t时刻,关于(r,p)的微体积元<math> d^3\bf{r}</math>和微动量元<math> \mathrm{d}^3\bf{p}</math>内的分子数目。在位置空间和动量空间的一个区域上积分,得出在该区域中具有位置和动量的粒子总数: | | dN是在t时刻,关于(r,p)的微体积元<math> d^3\bf{r}</math>和微动量元<math> \mathrm{d}^3\bf{p}</math>内的分子数目。在位置空间和动量空间的一个区域上积分,得出在该区域中具有位置和动量的粒子总数: |
| | | |
| + | <math>N=\int d^{3}\mathbf{p}\int d^{3}\mathbf{r}f(\mathbf{r},\mathbf{p},t)=\iiint\iiint f(x,y,z,p_{x},p_{y},p_{z},t) \text{d}x\,\text{d}y\,\text{d}z\,\text{d}p_x\,\text{d}p_y\,\text{d}p_z</math> |
| | | |
| which is a [[multiple integral|6-fold integral]]. While ''f'' is associated with a number of particles, the phase space is for one-particle (not all of them, which is usually the case with [[deterministic]] [[many body problem|many-body]] systems), since only one '''r''' and '''p''' is in question. It is not part of the analysis to use '''r'''<sub>1</sub>, '''p'''<sub>1</sub> for particle 1, '''r'''<sub>2</sub>, '''p'''<sub>2</sub> for particle 2, etc. up to '''r'''<sub>''N''</sub>, '''p'''<sub>''N''</sub> for particle ''N''. | | which is a [[multiple integral|6-fold integral]]. While ''f'' is associated with a number of particles, the phase space is for one-particle (not all of them, which is usually the case with [[deterministic]] [[many body problem|many-body]] systems), since only one '''r''' and '''p''' is in question. It is not part of the analysis to use '''r'''<sub>1</sub>, '''p'''<sub>1</sub> for particle 1, '''r'''<sub>2</sub>, '''p'''<sub>2</sub> for particle 2, etc. up to '''r'''<sub>''N''</sub>, '''p'''<sub>''N''</sub> for particle ''N''. |
第120行: |
第121行: |
| | | |
| is a shorthand for the momentum analogue of ∇, and '''ê'''<sub>''x''</sub>, '''ê'''<sub>''y''</sub>, '''ê'''<sub>''z''</sub> are [[cartesian coordinates|Cartesian]] [[unit vector]]s. | | is a shorthand for the momentum analogue of ∇, and '''ê'''<sub>''x''</sub>, '''ê'''<sub>''y''</sub>, '''ê'''<sub>''z''</sub> are [[cartesian coordinates|Cartesian]] [[unit vector]]s. |
− | ===Final statement=== | + | === Final statement=== |
| | | |
| Dividing ({{EquationNote|3}}) by ''dt'' and substituting into ({{EquationNote|2}}) gives: | | Dividing ({{EquationNote|3}}) by ''dt'' and substituting into ({{EquationNote|2}}) gives: |
第162行: |
第163行: |
| 1-link = Leif Arkeryd | | 1-link = Leif Arkeryd |
| | | |
− | === Two-body collision term === | + | ===Two-body collision term === |
| | | |
| | title= On the Boltzmann equation part II: The full initial value problem | journal= Arch. Rational Mech. Anal. | volume= 45 | issue= 1 | | | title= On the Boltzmann equation part II: The full initial value problem | journal= Arch. Rational Mech. Anal. | volume= 45 | issue= 1 |
第200行: |
第201行: |
| 类别: 统计力学 | | 类别: 统计力学 |
| | | |
− | === Simplifications to the collision term === | + | ===Simplifications to the collision term=== |
| | | |
| where <math>\nu</math> is the molecular collision frequency, and <math>f_0</math> is the local Maxwellian distribution function given the gas temperature at this point in space. | | where <math>\nu</math> is the molecular collision frequency, and <math>f_0</math> is the local Maxwellian distribution function given the gas temperature at this point in space. |
第218行: |
第219行: |
| <small>This page was moved from [[wikipedia:en:Boltzmann equation]]. Its edit history can be viewed at [[玻尔兹曼方程/edithistory]]</small></noinclude> | | <small>This page was moved from [[wikipedia:en:Boltzmann equation]]. Its edit history can be viewed at [[玻尔兹曼方程/edithistory]]</small></noinclude> |
| | | |
− | == 通用方程(对于混合物) == | + | ==通用方程(对于混合物)== |
| For a mixture of chemical species labelled by indices i = 1, 2, 3, ..., n the equation for species i is | | For a mixture of chemical species labelled by indices i = 1, 2, 3, ..., n the equation for species i is |
| | | |
− | == 应用与推广 == | + | ==应用与推广== |
| 守恒方程 | | 守恒方程 |
| | | |
第271行: |
第272行: |
| | | |
| 20世纪90年代物理宇宙学,完全协变方法被用于研究宇宙微波背景辐射。更一般地说,对早期宇宙过程的研究往往试图考虑量子力学和广义相对论的影响。 | | 20世纪90年代物理宇宙学,完全协变方法被用于研究宇宙微波背景辐射。更一般地说,对早期宇宙过程的研究往往试图考虑量子力学和广义相对论的影响。 |
− | == 方程求解 == | + | ==方程求解== |
| this analytical approach provides insight, but is not generally usable in practical problems. | | this analytical approach provides insight, but is not generally usable in practical problems. |
| | | |
第284行: |
第285行: |
| 在接近局部均衡的情况下,玻尔兹曼方程的解可以用一个克努森数的渐近展开表示(Chapman-Enskog 展开式)。这个展开式的前两项给出了欧拉方程和纳维-斯托克斯方程。较高的项有奇点。从原子观点(以玻尔兹曼方程为代表)到连续统运动定律的极限过程的数学发展问题,是希尔伯特第六个问题的重要组成部分。 | | 在接近局部均衡的情况下,玻尔兹曼方程的解可以用一个克努森数的渐近展开表示(Chapman-Enskog 展开式)。这个展开式的前两项给出了欧拉方程和纳维-斯托克斯方程。较高的项有奇点。从原子观点(以玻尔兹曼方程为代表)到连续统运动定律的极限过程的数学发展问题,是希尔伯特第六个问题的重要组成部分。 |
| | | |
− | == 另见 == | + | ==另见== |
| | | |
− | == 注释 == | + | ==注释== |
| <references /> | | <references /> |
| | | |
− | == 参考文献 == | + | ==参考文献== |
| [[分类:偏微分方程]] | | [[分类:偏微分方程]] |
| [[分类:统计力学]] | | [[分类:统计力学]] |