第21行: |
第21行: |
| x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, | | x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, |
| \ldots). </math> | | \ldots). </math> |
− | 如果对所有<math>\lambda\ ,</math>都满足关系{{NumBlk|2=<math>f(\lambda | + | 如果对所有<math>\lambda\ </math>都满足关系{{NumBlk|2=<math>f(\lambda |
| x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, | | x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, |
| \ldots). </math>|3={{EquationRef|1}}|:}} | | \ldots). </math>|3={{EquationRef|1}}|:}} |
| | | |
− | 则称函数<math>f (x, y, z,\ldots)</math>是变量<math>x,y,z,\ldots</math>的<math>n</math>次齐次函数。For example, <math>ax^2 + bxy + cy^2</math> | + | 则称函数<math>f (x, y, z,\ldots)</math>是变量<math>x,y,z,\ldots</math>的<math>n</math>次齐次函数。 |
− | is homogeneous of degree 2 in <math>x</math> and <math>y</math> and of | + | |
| + | For example, <math>ax^2 + bxy + cy^2</math> is homogeneous of degree 2 in <math>x</math> and <math>y</math> and of |
| the first degree in <math>a, b,</math> and <math>c\ .</math> | | the first degree in <math>a, b,</math> and <math>c\ .</math> |
| | | |
− | 例如,<math>ax^2 + bxy + cy^2</math>是<math>x</math>和<math>y</math>二次齐次函数,而对<math>a, b,</math><math>c\ .</math>则是一次齐次。 | + | 例如,<math>ax^2 + bxy + cy^2</math>是<math>x</math>和<math>y</math>二次齐次函数,而对<math>a, b,</math><math>c\ </math>则是一次齐次。 |
| | | |
| By setting <math>\lambda = 1/x</math> in ({{EquationNote|1}}) we have | | By setting <math>\lambda = 1/x</math> in ({{EquationNote|1}}) we have |
第73行: |
第74行: |
| {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots). | | {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots). |
| </math> | | </math> |
− | 在[https://wiki.swarma.org/index.php/%E7%83%AD%E5%8A%9B%E5%AD%A6 热力学 Thermodynamics]中,如果一个系统的标度增加<math>\lambda</math>倍而其强度量不发生变化,则该系统所有化学组分的广度量(如熵<math>S\ ,</math>,能量<math>E\ ,</math>,体积<math>V\ ,</math>,质量<math>m_1, m_2, \ldots</math>等)也增加相同倍数。因此广度函数<math>S(E, V, m_1, m_2, \ldots)</math>在广义论证中满足齐次关系:{{NumBlk|:|<math>S(\lambda E, \lambda V, \lambda | + | 在[https://wiki.swarma.org/index.php/%E7%83%AD%E5%8A%9B%E5%AD%A6 热力学 Thermodynamics]中,如果一个系统的标度增加<math>\lambda</math>倍而其强度量不发生变化,则该系统所有化学组分的广度量(如熵<math>S\ ,</math>能量<math>E\ ,</math>体积<math>V\ ,</math>质量<math>m_1, m_2, \ldots</math>等)也增加相同倍数。因此广度函数<math>S(E, V, m_1, m_2, \ldots)</math>在广义论证中满足齐次关系:{{NumBlk|:|<math>S(\lambda E, \lambda V, \lambda |
| {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots).</math>|{{EquationRef|4}}}} | | {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots).</math>|{{EquationRef|4}}}} |
| | | |
第84行: |
第85行: |
| \frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - | | \frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - |
| \cdots) =S, </math> | | \cdots) =S, </math> |
− | 以<math>T</math>,<math>p</math>,<math>\mu_i</math>分别表示温度,压力和不同组分<math>i\ ,</math>的化学势,根据热力学关系 <math>\partial | + | 以<math>T</math>,<math>p</math>,<math>\mu_i</math> 分别表示温度,压力和不同组分<math>i\ </math>的化学势,根据热力学关系 <math>\partial |
− | S/\partial E = 1/T\ ,</math> <math>\partial S/\partial V = p/T\ ,</math> 和<math>\partial S/\partial m_i = - \mu_i/T\ ;</math>;再由欧拉定理可得:{{NumBlk|:|<math>\frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - | + | S/\partial E = 1/T\ ,</math> <math>\partial S/\partial V = p/T\ ,</math> 和<math>\partial S/\partial m_i = - \mu_i/T\ ;</math>再由欧拉定理可得:{{NumBlk|:|<math>\frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - |
| \cdots) =S,</math>|{{EquationRef|5}}}} | | \cdots) =S,</math>|{{EquationRef|5}}}} |
| | | |
第93行: |
第94行: |
| X = m_1 \frac{\partial X}{\partial | | X = m_1 \frac{\partial X}{\partial |
| m_1} + m_2 \frac{\partial X}{\partial m_2} + \cdots , </math> | | m_1} + m_2 \frac{\partial X}{\partial m_2} + \cdots , </math> |
− | 任何广度函数<math>X(T, p, m_1, m_2, \ldots)\ ,</math>(如体积<math>V\ ,</math>或者吉布斯自由能<math>E+pV-TS\ ,</math>)在等温等压状态下,对<math>m_i</math>都是一次齐次的,因此{{NumBlk|:|<math>X = m_1 \frac{\partial X}{\partial | + | 任何广度函数<math>X(T, p, m_1, m_2, \ldots)\ ,</math>(如体积<math>V\ </math>或者吉布斯自由能<math>E+pV-TS\ ,</math>)在等温等压状态下,对<math>m_i</math>都是一次齐次的,因此{{NumBlk|:|<math>X = m_1 \frac{\partial X}{\partial |
| m_1} + m_2 \frac{\partial X}{\partial m_2} + \cdots ,</math>|{{EquationRef|6}}}} | | m_1} + m_2 \frac{\partial X}{\partial m_2} + \cdots ,</math>|{{EquationRef|6}}}} |
| | | |
第108行: |
第109行: |
| | | |
| Near the Curie point (critical point) of a ferromagnet, which occurs | | Near the Curie point (critical point) of a ferromagnet, which occurs |
− | at <math>T = T_c\ ,</math> the magnetic field <math>H\ ,</math> | + | at <math>T = T_c\ , </math> the magnetic field <math>H\ ,</math> |
| magnetization <math>M\ ,</math> and <math>t = T/T_c-1\ ,</math> are | | magnetization <math>M\ ,</math> and <math>t = T/T_c-1\ ,</math> are |
| related by | | related by |
第115行: |
第116行: |
| H = M\mid M\mid ^{\delta-1} j(t/\mid M\mid | | H = M\mid M\mid ^{\delta-1} j(t/\mid M\mid |
| ^{1/\beta}) </math> | | ^{1/\beta}) </math> |
− | 当<math>t = T/T_c-1\ ,</math>时,铁磁物质临近居里点(临界点),磁场强度<math>H\ ,</math>,磁化强度<math>M\ ,</math>和<math>t = T/T_c-1\ ,</math>满足{{NumBlk|:|<math>H = M\mid M\mid ^{\delta-1} j(t/\mid M\mid | + | 当<math>t = T/T_c-1\ </math>时,铁磁物质临近居里点(临界点),磁场强度<math>H\,</math>磁化强度<math>M\,</math>和<math>t = T/T_c-1\ </math>满足{{NumBlk|:|<math>H = M\mid M\mid ^{\delta-1} j(t/\mid M\mid |
| ^{1/\beta})</math>|{{EquationRef|7}}}} | | ^{1/\beta})</math>|{{EquationRef|7}}}} |
| | | |
第121行: |
第122行: |
| ^{1/\beta}</math> of degree <math>\beta \delta\ .</math> The scaling function <math>j(x)</math> vanishes proportionally to <math>x+b</math> as <math>x</math> approaches <math>-b\ ,</math> with <math>b</math> a positive constant; it diverges proportionally to <math>x^{\beta(\delta-1)}</math> as <math>x\rightarrow \infty\ ;</math> and <math>j(0) = c\ ,</math> another positive constant (Fig. 1). Although ({{EquationNote|7}}) is confined to the immediate neighborhood of the critical point <math>(t, M, H</math> all near 0), the scaling variable <math>x = t/\mid M\mid ^{1/\beta}</math> nevertheless traverses the infinite range <math>-b < x < \infty\ .</math> | | ^{1/\beta}</math> of degree <math>\beta \delta\ .</math> The scaling function <math>j(x)</math> vanishes proportionally to <math>x+b</math> as <math>x</math> approaches <math>-b\ ,</math> with <math>b</math> a positive constant; it diverges proportionally to <math>x^{\beta(\delta-1)}</math> as <math>x\rightarrow \infty\ ;</math> and <math>j(0) = c\ ,</math> another positive constant (Fig. 1). Although ({{EquationNote|7}}) is confined to the immediate neighborhood of the critical point <math>(t, M, H</math> all near 0), the scaling variable <math>x = t/\mid M\mid ^{1/\beta}</math> nevertheless traverses the infinite range <math>-b < x < \infty\ .</math> |
| | | |
− | 其中<math>j(x)</math>是“标度”函数,<math>\beta</math>和<math>\delta</math>是临界点指数。因此由({{EquationNote|2}})和({{EquationNote|7}}),当铁磁物质趋近于临界点时(<math>(H\rightarrow 0</math>且<math>t\rightarrow 0)\ ,</math>),<math>\mid H\mid</math>是<math>t</math>和<math>\mid M\mid | + | 其中<math>j(x)</math>是“标度”函数,<math>\beta</math>和<math>\delta</math>是临界点指数。因此由({{EquationNote|2}})和({{EquationNote|7}}),当铁磁物质趋近于临界点时<math>(H\rightarrow 0</math>且<math>t\rightarrow 0)\ ,</math>,<math>\mid H\mid</math>是<math>t</math>和<math>\mid M\mid |
− | ^{1/\beta}</math>的<math>\beta \delta\ .</math>次齐次函数。当<math>x</math>趋近于<math>-b\ ,</math>(正常数)时,标度函数<math>j(x)</math>趋近于零;当<math>x\rightarrow \infty\ ;</math>时,它发散至<math>x^{\beta(\delta-1)}</math>,且<math>j(0) = c\ </math>(正常数)(如图一)。尽管({{EquationNote|7}})局限在临界点<math>(t, M, H</math>都接近零)附近的极小范围内,但标度变量<math>x = t/\mid M\mid ^{1/\beta}</math>却遍历<math>-b < x < \infty\ .</math>的无穷范围。 | + | ^{1/\beta}</math>的<math>\beta \delta\ </math>次齐次函数。当<math>x</math>趋近于<math>-b\</math>(正常数)时,标度函数<math>j(x)</math>趋近于零;当<math>x\rightarrow \infty\ ;</math>时,它发散至<math>x^{\beta(\delta-1)}</math>,且<math>j(0) = c\ </math>(正常数)(如图一)。尽管({{EquationNote|7}})局限在临界点<math>(t, M, H</math>都接近零)附近的极小范围内,但标度变量<math>x = t/\mid M\mid ^{1/\beta}</math>却遍历<math>-b < x < \infty\</math>的无穷范围。 |
| | | |
| [[Image:scaling_laws_widom_nocaption_Fig1.png|thumb|300px|right|Scaling function | | [[Image:scaling_laws_widom_nocaption_Fig1.png|thumb|300px|right|Scaling function |