更改

添加875字节 、 2021年12月7日 (二) 16:09
第157行: 第157行:  
:<math>\label{eq:9}
 
:<math>\label{eq:9}
 
\alpha +2\beta +\gamma=2.  </math>
 
\alpha +2\beta +\gamma=2.  </math>
{{NumBlk|:|<math>\alpha +2\beta +\gamma=2. </math>|{{EquationRef|9}}}}When <math>2\beta+\gamma=2</math> the resulting <math>\alpha =0</math> means, generally, a logarithmic rather than power-law divergence together with a superimposed finite discontinuity occurring between <math>t=0+</math> and <math>t=0-</math> [4].  In the 2-dimensional Ising model the discontinuity is absent and only the logarithm remains, while in mean-field (van der Waals, Curie-Weiss, Bragg-Williams) approximation the logarithm is absent but the
+
由于<math>M = -(\partial
discontinuity is still present.
+
F/\partial H)_T\ ,</math>自由能<math>F</math>可以通过固定温度下积分由({{EquationNote|7}})式得出,且相应的热容<math>C_H = -(\partial ^2
 +
F/\partial T^2)_H\ .</math>由({{EquationNote|7}})式可知,在<math>H=0</math>时<math>C_H</math>在临界点处成比例发散至<math>\mid t\mid ^{-\alpha}</math>(其中<math>t\rightarrow 0-</math>和<math>t\rightarrow
 +
0+)\ </math>各有不同的系数),临界点指数<math>\alpha</math>与<math>\beta</math>和<math>\gamma</math>满足以下标度律:{{NumBlk|:|<math>\alpha +2\beta +\gamma=2. </math>|{{EquationRef|9}}}}When <math>2\beta+\gamma=2</math> the resulting <math>\alpha =0</math> means, generally, a logarithmic rather than power-law divergence together with a superimposed finite discontinuity occurring between <math>t=0+</math> and <math>t=0-</math> [4].  In the 2-dimensional Ising model the discontinuity is absent and only the logarithm remains, while in mean-field (van der Waals, Curie-Weiss, Bragg-Williams) approximation the logarithm is absent but the discontinuity is still present.
    +
当<math>2\beta+\gamma=2</math>,则有<math>\alpha =0</math>,这通常意味着对数发散而不是幂律发散,并且在<math>t=0+</math>和<math>t=0-</math>之间存在叠加有限不连续。在二维伊辛模型中,仅有对数关系而这种不连续是不存在的;而在平均场近似中情形相反。
 
== Critical exponents ==
 
== Critical exponents ==
  
596

个编辑