第312行: |
第312行: |
| [5], which was itself one of the inspirations for the | | [5], which was itself one of the inspirations for the |
| renormalization-group theory [19,20]. | | renormalization-group theory [19,20]. |
| + | |
| + | 来自于重整化群理论的卡丹诺夫块自旋(图2)为({{EquationNote|1=7}})和({{EquationNote|1=10}})中的齐次性以及由它们推导出的指数关系提供了物理解释。 |
| | | |
| In a lattice spin model (Ising model), one considers blocks of spins, | | In a lattice spin model (Ising model), one considers blocks of spins, |
第317行: |
第319行: |
| spins, with <math>L</math> much less than the diverging correlation | | spins, with <math>L</math> much less than the diverging correlation |
| length <math>\xi</math> (Fig. 2). | | length <math>\xi</math> (Fig. 2). |
| + | |
| + | 在格子自旋模型([[伊辛模型 Ising Model|'''伊辛模型''']])中,假设有许多自旋块,每一个的线性尺寸为<math>L\ </math>,因此包含<math>L^d</math>,而<math>L</math>远小于发散关联长度<math>\xi</math>(图2)。 |
| | | |
| [[Image:scaling_laws_widom_nocaption_Fig2.png|thumb|300px|right|Block spins|链接=Special:FilePath/Scaling_laws_widom_nocaption_Fig2.png]] | | [[Image:scaling_laws_widom_nocaption_Fig2.png|thumb|300px|right|Block spins|链接=Special:FilePath/Scaling_laws_widom_nocaption_Fig2.png]] |
第331行: |
第335行: |
| f(L^yt, | | f(L^yt, |
| L^xH) \equiv L^df(t,H); </math> | | L^xH) \equiv L^df(t,H); </math> |
− | {{NumBlk|1=:|2=<math>f(L^yt, | + | 每一个自旋块通过与相邻块的共同边界相互作用。在对应的重标度模型中可以将它们视作单独的自旋。每个块的大小都是有限的,因此其内部的自旋只对系统的自由能提供解析项。{{NumBlk|1=:|2=<math>f(L^yt, |
| L^xH) \equiv L^df(t,H);</math>|3={{EquationRef|20}}}} | | L^xH) \equiv L^df(t,H);</math>|3={{EquationRef|20}}}} |
| | | |