更改

删除42字节 、 2022年1月10日 (一) 16:37
无编辑摘要
第84行: 第84行:  
罗森的工作结合了复杂数学和有关生命系统与科学本质的潜在的激进新观点。他被称为“生物学中的牛顿”。基于集合论,他的工作也被认为是有争议的,引起了人们对他使用的一些数学方法可能缺乏充分证明的担忧。罗森死后的著作《论生命本身》(2000年)以及罗森的学生阿洛修斯路易最近的专著阐明和解释了罗森作品中的数学内容。
 
罗森的工作结合了复杂数学和有关生命系统与科学本质的潜在的激进新观点。他被称为“生物学中的牛顿”。基于集合论,他的工作也被认为是有争议的,引起了人们对他使用的一些数学方法可能缺乏充分证明的担忧。罗森死后的著作《论生命本身》(2000年)以及罗森的学生阿洛修斯路易最近的专著阐明和解释了罗森作品中的数学内容。
   −
=== Relational biology ===
+
== Relational biology ==
   −
=== 关系生物学 ===
+
== 关系生物学 ==
 
Rosen's work proposed a methodology which needs to be developed in addition to the current reductionistic approaches to science by [[molecular biology|molecular biologists]]. He called this methodology ''Relational Biology''. ''Relational'' is a term he correctly attributes to his mentor [[Nicolas Rashevsky]], who published several papers on the importance of set-theoretical relations<ref>{{Cite web |url=http://planetphysics.org/encyclopedia/RelationTheory.html |title=Jon Awbrey ''Relation theory'' (the logical approach to relation theory) |access-date=January 31, 2010 |archive-url=https://web.archive.org/web/20100527004040/http://planetphysics.org/encyclopedia/RelationTheory.html |archive-date=May 27, 2010 |url-status=dead  }}</ref> in biology prior to Rosen's first reports on this subject. Rosen's relational approach to Biology is an extension and amplification of Nicolas Rashevsky's treatment of ''n''-ary relations in, and among, organismic sets that he developed over two decades as a representation of both biological and social "organisms".
 
Rosen's work proposed a methodology which needs to be developed in addition to the current reductionistic approaches to science by [[molecular biology|molecular biologists]]. He called this methodology ''Relational Biology''. ''Relational'' is a term he correctly attributes to his mentor [[Nicolas Rashevsky]], who published several papers on the importance of set-theoretical relations<ref>{{Cite web |url=http://planetphysics.org/encyclopedia/RelationTheory.html |title=Jon Awbrey ''Relation theory'' (the logical approach to relation theory) |access-date=January 31, 2010 |archive-url=https://web.archive.org/web/20100527004040/http://planetphysics.org/encyclopedia/RelationTheory.html |archive-date=May 27, 2010 |url-status=dead  }}</ref> in biology prior to Rosen's first reports on this subject. Rosen's relational approach to Biology is an extension and amplification of Nicolas Rashevsky's treatment of ''n''-ary relations in, and among, organismic sets that he developed over two decades as a representation of both biological and social "organisms".
   第132行: 第132行:  
他有意地选择“最简单的”图和类别来表示只赋予离散集合的“有效”拓扑小类别集合中的代谢-修复系统,并且设想这种选择是最一般和限制较少的。然而,事实证明 (M{,}R)系统的有效衍生是“有效因果闭合的”。唐纳德·c·米库勒基·罗伯特·罗森: 这是一个恰当的问题及其答案——为什么有机体不同于机器?或者用简单的术语来说,新陈代谢的催化剂(新陈代谢的“有效原因”,通常被认为是酶)本身就是新陈代谢的产物,因此,从严格的数学意义上来说,可能不会被认为是连续机器或自动机范畴的子范畴: 这与法国哲学家笛卡尔的假设直接矛盾,即所有的动物都只是复杂的机器或机制。罗森说:“我认为,解决这些问题(主体-客体边界和什么构成客观性)的唯一办法是承认因果关系的闭环是‘客观的’;即科学审查的合法对象。任何机器论或机械论都明确禁止这些操作。”罗森关于“有效闭合”的论证,是为了在机械论科学中提出这样一个明确的悖论: 一方面,生物体是由这种因果闭合定义的,另一方面,机制又禁止它们; 因此,我们需要修正我们对自然的理解。这种机械论的观点甚至在今天的大多数普通生物学和大多数科学中依然盛行,尽管有些人声称社会学和心理学中的还原论方法已经失败,并且自20世纪70年代初以来已经失宠。然而,这些领域尚未就新观点应该是什么达成共识,大多数其他学科也是如此,这些学科努力保留生命和复杂系统的”机器隐喻”的各个方面。
 
他有意地选择“最简单的”图和类别来表示只赋予离散集合的“有效”拓扑小类别集合中的代谢-修复系统,并且设想这种选择是最一般和限制较少的。然而,事实证明 (M{,}R)系统的有效衍生是“有效因果闭合的”。唐纳德·c·米库勒基·罗伯特·罗森: 这是一个恰当的问题及其答案——为什么有机体不同于机器?或者用简单的术语来说,新陈代谢的催化剂(新陈代谢的“有效原因”,通常被认为是酶)本身就是新陈代谢的产物,因此,从严格的数学意义上来说,可能不会被认为是连续机器或自动机范畴的子范畴: 这与法国哲学家笛卡尔的假设直接矛盾,即所有的动物都只是复杂的机器或机制。罗森说:“我认为,解决这些问题(主体-客体边界和什么构成客观性)的唯一办法是承认因果关系的闭环是‘客观的’;即科学审查的合法对象。任何机器论或机械论都明确禁止这些操作。”罗森关于“有效闭合”的论证,是为了在机械论科学中提出这样一个明确的悖论: 一方面,生物体是由这种因果闭合定义的,另一方面,机制又禁止它们; 因此,我们需要修正我们对自然的理解。这种机械论的观点甚至在今天的大多数普通生物学和大多数科学中依然盛行,尽管有些人声称社会学和心理学中的还原论方法已经失败,并且自20世纪70年代初以来已经失宠。然而,这些领域尚未就新观点应该是什么达成共识,大多数其他学科也是如此,这些学科努力保留生命和复杂系统的”机器隐喻”的各个方面。
   −
=== Complexity and complex scientific models: (''M,R'') systems ===
+
== Complexity and complex scientific models: (''M,R'') systems ==
   −
=== 复杂性和复杂科学模型:(M,R)系统 ===  
+
== 复杂性和复杂科学模型:(M,R)系统 ==  
    
The clarification of the distinction between simple and [[complex system|complex scientific models]] became in later years a major goal of Rosen's published reports. Rosen maintained that modeling is at the very essence of science and thought. His book [[Anticipatory Systems; Philosophical, Mathematical, and Methodological Foundations|''Anticipatory Systems'']]<ref>''Anticipatory Systems: Philosophical, Mathematical, and  Methodological Foundations'', Robert Rosen, 2nd edition, with contributions by Judith Rosen, John J. Klineman and Mihai Nadin, 2012, lx + 472 pp., Springer, New York {{ISBN|978-1-4614-1268-7}}</ref> describes, in detail, what he termed the ''modeling relation''. He showed the deep differences between a true modeling relation and a [[simulation]], the latter not based on such a modeling relation.
 
The clarification of the distinction between simple and [[complex system|complex scientific models]] became in later years a major goal of Rosen's published reports. Rosen maintained that modeling is at the very essence of science and thought. His book [[Anticipatory Systems; Philosophical, Mathematical, and Methodological Foundations|''Anticipatory Systems'']]<ref>''Anticipatory Systems: Philosophical, Mathematical, and  Methodological Foundations'', Robert Rosen, 2nd edition, with contributions by Judith Rosen, John J. Klineman and Mihai Nadin, 2012, lx + 472 pp., Springer, New York {{ISBN|978-1-4614-1268-7}}</ref> describes, in detail, what he termed the ''modeling relation''. He showed the deep differences between a true modeling relation and a [[simulation]], the latter not based on such a modeling relation.
第166行: 第166行:  
罗伯特 · 罗森的方法在概念上属于现在已知的功能生物学,以及复杂系统生物学,尽管是以一种高度抽象的数学形式。
 
罗伯特 · 罗森的方法在概念上属于现在已知的功能生物学,以及复杂系统生物学,尽管是以一种高度抽象的数学形式。
   −
=== Quantum Biochemistry and Quantum Genetics ===
+
== Quantum Biochemistry and Quantum Genetics ==
   −
=== 量子生物化学与量子遗传学 ===
+
== 量子生物化学与量子遗传学 ==
    
Rosen also questioned what he believed to be many aspects of mainstream interpretations of [[biochemistry]] and [[genetics]]. He objects to the idea that functional aspects in biological systems can be investigated via a material focus. One example: Rosen disputes that the functional capability of a biologically active [[protein]] can be investigated purely using the genetically encoded sequence of [[amino acid]]s. This is because, he said, a protein must undergo a process of folding to attain its characteristic three-dimensional shape before it can become functionally active in the system. Yet, only the [[amino acid sequence]] is genetically coded. The mechanisms by which proteins fold are not completely known. He concluded, based on examples such as this, that [[phenotype]] cannot always be directly attributed to [[genotype]] and that the chemically active aspect of a biologically active protein relies on more than the sequence of amino acids, from which it was constructed: there must be some other important factors at work, that he did not however attempt to specify or pin down.
 
Rosen also questioned what he believed to be many aspects of mainstream interpretations of [[biochemistry]] and [[genetics]]. He objects to the idea that functional aspects in biological systems can be investigated via a material focus. One example: Rosen disputes that the functional capability of a biologically active [[protein]] can be investigated purely using the genetically encoded sequence of [[amino acid]]s. This is because, he said, a protein must undergo a process of folding to attain its characteristic three-dimensional shape before it can become functionally active in the system. Yet, only the [[amino acid sequence]] is genetically coded. The mechanisms by which proteins fold are not completely known. He concluded, based on examples such as this, that [[phenotype]] cannot always be directly attributed to [[genotype]] and that the chemically active aspect of a biologically active protein relies on more than the sequence of amino acids, from which it was constructed: there must be some other important factors at work, that he did not however attempt to specify or pin down.
第270行: 第270行:  
埃尔温·薛定谔在他1945年的著作《生命是什么?罗森在《生命本身》一书和他随后出版的《论生命本身》一书中对这些问题进行了批判性的讨论。注释,作者朱迪思 · 罗森,拥有她父亲的著作的版权: 罗森的分析有些混乱是由于生活本身的错误。例如,引用(m { ,} r)-Systems 的图表有多个错误; 这些错误在 Rosen 的书稿中不存在。《预期系统; 哲学,数学,和方法论基础》一书有相同的图表,正确地表示。
 
埃尔温·薛定谔在他1945年的著作《生命是什么?罗森在《生命本身》一书和他随后出版的《论生命本身》一书中对这些问题进行了批判性的讨论。注释,作者朱迪思 · 罗森,拥有她父亲的著作的版权: 罗森的分析有些混乱是由于生活本身的错误。例如,引用(m { ,} r)-Systems 的图表有多个错误; 这些错误在 Rosen 的书稿中不存在。《预期系统; 哲学,数学,和方法论基础》一书有相同的图表,正确地表示。
   −
===Comparison with other theories of life===
+
==Comparison with other theories of life==
   −
===与其他生命理论的比较 ===
+
==与其他生命理论的比较 ==
 
(''M,R'') systems constitute just one of several current theories of life, including the [[chemoton]]<ref name="gantibook">{{cite book| isbn= 9780198507260| title = The Principles of Life | last = Gánti | first = Tibor |publisher = Oxford University Press | date = 2003|editor1 = Eörs Száthmary | editor2 = James Griesemer}}</ref> of [[Tibor Gánti]], the [[Hypercycle (chemistry)|hypercycle]] of [[Manfred Eigen]] and [[Peter Schuster]],<ref>{{cite journal | doi= 10.11007/bf00450633|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. A: emergence of the hypercycle| journal= Naturwissenschaften|volume = 64|issue = 11|pages = 541–565}}</ref><ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. B: the abstract hypercycle| journal= Naturwissenschaften|volume = 65|issue = 1 |pages = 7–41}}</ref>
 
(''M,R'') systems constitute just one of several current theories of life, including the [[chemoton]]<ref name="gantibook">{{cite book| isbn= 9780198507260| title = The Principles of Life | last = Gánti | first = Tibor |publisher = Oxford University Press | date = 2003|editor1 = Eörs Száthmary | editor2 = James Griesemer}}</ref> of [[Tibor Gánti]], the [[Hypercycle (chemistry)|hypercycle]] of [[Manfred Eigen]] and [[Peter Schuster]],<ref>{{cite journal | doi= 10.11007/bf00450633|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. A: emergence of the hypercycle| journal= Naturwissenschaften|volume = 64|issue = 11|pages = 541–565}}</ref><ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. B: the abstract hypercycle| journal= Naturwissenschaften|volume = 65|issue = 1 |pages = 7–41}}</ref>
 
<ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. C: the realistic hypercycle| journal= Naturwissenschaften|volume = 65|issue = 7 |pages = 41–369}}</ref> [[autopoiesis]] (or ''self-building'')<ref>{{cite book| last1=Maturana |first1 = H. R.|last2 =Varela|first2 = F. |title = Autopoiesis and cognition: the realisation of the living|date=1980|publisher= D. Reidel Publishing Company| place = Dordrecht}}</ref> of [[Humberto Maturana]] and [[Francisco Varela]], and the [[Autocatalytic set|autocatalytic sets]]<ref>{{cite journal | doi= 10.1016/0022-5193(69)90015-0|last1 = Kauffman|first1= S. A. |title = Metabolic stability and epigenesis in randomly constructed genetic nets| journal = J. Theor. Biol. |volume =22|issue=3|date=1969|pages=437–467}}</ref> of [[Stuart Kauffman]], similar to an earlier proposal by [[Freeman Dyson]].<ref>{{cite journal | doi= 10.1007/bf01733901 | title =A model for the origin of life| last = Dyson| first = F. J.|journal = J. Mol. Evol.| volume = 18| issue = 5| pages=344–350| date =1982}}</ref>  
 
<ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. C: the realistic hypercycle| journal= Naturwissenschaften|volume = 65|issue = 7 |pages = 41–369}}</ref> [[autopoiesis]] (or ''self-building'')<ref>{{cite book| last1=Maturana |first1 = H. R.|last2 =Varela|first2 = F. |title = Autopoiesis and cognition: the realisation of the living|date=1980|publisher= D. Reidel Publishing Company| place = Dordrecht}}</ref> of [[Humberto Maturana]] and [[Francisco Varela]], and the [[Autocatalytic set|autocatalytic sets]]<ref>{{cite journal | doi= 10.1016/0022-5193(69)90015-0|last1 = Kauffman|first1= S. A. |title = Metabolic stability and epigenesis in randomly constructed genetic nets| journal = J. Theor. Biol. |volume =22|issue=3|date=1969|pages=437–467}}</ref> of [[Stuart Kauffman]], similar to an earlier proposal by [[Freeman Dyson]].<ref>{{cite journal | doi= 10.1007/bf01733901 | title =A model for the origin of life| last = Dyson| first = F. J.|journal = J. Mol. Evol.| volume = 18| issue = 5| pages=344–350| date =1982}}</ref>  
第284行: 第284行:  
(m,r)系统只是当前几个生命理论中的一个,包括 Tibor Gánti 的 chemoton,Manfred Eigen 和 Peter Schuster 的超循环,Humberto Maturana 和 Francisco Varela 的自创生(或自我构建) ,以及 Stuart Kauffman 的自催化集,类似于 Dyson 早期的提议。所有这些(包括(m,r)系统)的灵感都来源于埃尔温·薛定谔的《生命是什么?但起初他们之间似乎没有什么共同点,主要是因为作者之间没有交流,他们在主要出版物中也没有提到任何其他理论。尽管如此,两者之间的相似之处比乍看之下可能显而易见的要多,例如 Gánti 和罗森大厦之间的相似之处。直到最近,几乎没有人试图比较不同的理论并一起讨论它们。
 
(m,r)系统只是当前几个生命理论中的一个,包括 Tibor Gánti 的 chemoton,Manfred Eigen 和 Peter Schuster 的超循环,Humberto Maturana 和 Francisco Varela 的自创生(或自我构建) ,以及 Stuart Kauffman 的自催化集,类似于 Dyson 早期的提议。所有这些(包括(m,r)系统)的灵感都来源于埃尔温·薛定谔的《生命是什么?但起初他们之间似乎没有什么共同点,主要是因为作者之间没有交流,他们在主要出版物中也没有提到任何其他理论。尽管如此,两者之间的相似之处比乍看之下可能显而易见的要多,例如 Gánti 和罗森大厦之间的相似之处。直到最近,几乎没有人试图比较不同的理论并一起讨论它们。
   −
===Last Universal Common Ancestor (LUCA)===
+
==Last Universal Common Ancestor (LUCA)==
   −
===最后的共同祖先(LUCA)===
+
==最后的共同祖先(LUCA)==
 
Some authors equate models of the origin of life with LUCA, the '''L'''ast '''U'''niversal '''C'''ommon '''A'''ncestor of all extant life.<ref>{{cite journal | doi= 10.3390/life11090872 | title = The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis| last1 =Jheeta | first1 =S.| last2 = Chatzitheodoridis| first2 =E. | last3 = Devine| first3 =Kevin| last4 = Block| first4 = J.|journal = Life |date =2021| volume = 11|issue = 9 |pages = 872
 
Some authors equate models of the origin of life with LUCA, the '''L'''ast '''U'''niversal '''C'''ommon '''A'''ncestor of all extant life.<ref>{{cite journal | doi= 10.3390/life11090872 | title = The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis| last1 =Jheeta | first1 =S.| last2 = Chatzitheodoridis| first2 =E. | last3 = Devine| first3 =Kevin| last4 = Block| first4 = J.|journal = Life |date =2021| volume = 11|issue = 9 |pages = 872
 
}}</ref>  This is a serious error resulting from failure to recognize that '''L''' refers to the ''last'' common ancestor, not to the ''first'' ancestor, which is much older: a large amount of evolution occurred before the appearance of LUCA.<ref>{{cite journal | doi= 10.1016/j.jtbi.2017.05.023 | title = Life before LUCA |last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A| journal = J. Theor. Biol. | volume = 434 | pages=68–74}}</ref>
 
}}</ref>  This is a serious error resulting from failure to recognize that '''L''' refers to the ''last'' common ancestor, not to the ''first'' ancestor, which is much older: a large amount of evolution occurred before the appearance of LUCA.<ref>{{cite journal | doi= 10.1016/j.jtbi.2017.05.023 | title = Life before LUCA |last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A| journal = J. Theor. Biol. | volume = 434 | pages=68–74}}</ref>
第394行: 第394行:  
* Robert Rosen: June 27, 1934 — December 30, 1998 by Aloisius Louie.
 
* Robert Rosen: June 27, 1934 — December 30, 1998 by Aloisius Louie.
   −
= = 外部链接 = =
   
* 罗森尼复杂性网站上的 Panmere 网站: “朱迪思 · 罗森的网站提供了免费的个人简历、关于她父亲作品的讨论,以及罗伯特 · 罗森作品的免费再版。”。罗伯特 · 罗森: 这个问题及其答案是: 为什么有机体不同于机器?作者: Donald c. Mikulecky。
 
* 罗森尼复杂性网站上的 Panmere 网站: “朱迪思 · 罗森的网站提供了免费的个人简历、关于她父亲作品的讨论,以及罗伯特 · 罗森作品的免费再版。”。罗伯特 · 罗森: 这个问题及其答案是: 为什么有机体不同于机器?作者: Donald c. Mikulecky。
 
* 罗伯特 · 罗森: 1934年6月27日ー1998年12月30日。
 
* 罗伯特 · 罗森: 1934年6月27日ー1998年12月30日。
49

个编辑