更改

添加19字节 、 2022年1月22日 (六) 06:33
无编辑摘要
第6行: 第6行:  
==引言==
 
==引言==
 
规模(scale)是除去时间、空间之外另一个重要的维度。规模缩放(Scaling)的过程中隐藏着世界非线性本质奥秘背后的共性——规模法则。结合[[伯努瓦·曼德布洛特 Benoit Mandelbrot]]的《大自然的分形几何》、[[杰弗里·韦斯特 Geoffery West]] 的[[规模 Scale|《规模》]]以及唐纳德[[杰弗里·韦斯特 Geoffery West|·]]特科特 Donnald Turcotte《分形与混沌——在地质学与地球物理学中的应用》等文献资料,介绍规模法则的相关的内容。
 
规模(scale)是除去时间、空间之外另一个重要的维度。规模缩放(Scaling)的过程中隐藏着世界非线性本质奥秘背后的共性——规模法则。结合[[伯努瓦·曼德布洛特 Benoit Mandelbrot]]的《大自然的分形几何》、[[杰弗里·韦斯特 Geoffery West]] 的[[规模 Scale|《规模》]]以及唐纳德[[杰弗里·韦斯特 Geoffery West|·]]特科特 Donnald Turcotte《分形与混沌——在地质学与地球物理学中的应用》等文献资料,介绍规模法则的相关的内容。
 +
    
生命或许是宇宙中最复杂、最多样化的现象,它展现出了大大小小、纷繁异常的组织、功能和行为。据估计,地球上有超过800万个不同的生物物种。<ref>C. Domb, ''The Critical Point'' (Taylor & Francis, 1996).</ref>它们体形不一,最小的细菌质量不足1皮克,而最大的动物——蓝鲸则重100多吨。前往巴西的热带雨林,你可以在一块足球场面积大小的区域内找到100多种树木和分属数千个物种的数百万只昆虫。每个物种的孕育、出生、繁殖和死亡有太多令人惊异的不同。许多细菌仅能存活1小时,只需十万亿分之一瓦特的代谢率便能存活;而鲸类可以存活100年之久,其代谢率达到数百瓦特。<ref> M.E. Fisher, Repts. Prog. Phys. '''30''', part 2
 
生命或许是宇宙中最复杂、最多样化的现象,它展现出了大大小小、纷繁异常的组织、功能和行为。据估计,地球上有超过800万个不同的生物物种。<ref>C. Domb, ''The Critical Point'' (Taylor & Francis, 1996).</ref>它们体形不一,最小的细菌质量不足1皮克,而最大的动物——蓝鲸则重100多吨。前往巴西的热带雨林,你可以在一块足球场面积大小的区域内找到100多种树木和分属数千个物种的数百万只昆虫。每个物种的孕育、出生、繁殖和死亡有太多令人惊异的不同。许多细菌仅能存活1小时,只需十万亿分之一瓦特的代谢率便能存活;而鲸类可以存活100年之久,其代谢率达到数百瓦特。<ref> M.E. Fisher, Repts. Prog. Phys. '''30''', part 2
 
(1967) 615.</ref>我们人类为这个星球所带来的社会生活的复杂性和多样性则在这幅绚丽多彩的生物生命画卷上增添了浓墨重彩的一笔,尤其是那些潜藏在城市外表下的商业、建筑及每位城市居民所表现出来的多样文化和他们背后隐藏的喜怒哀乐,以及所有这些非同寻常的现象。
 
(1967) 615.</ref>我们人类为这个星球所带来的社会生活的复杂性和多样性则在这幅绚丽多彩的生物生命画卷上增添了浓墨重彩的一笔,尤其是那些潜藏在城市外表下的商业、建筑及每位城市居民所表现出来的多样文化和他们背后隐藏的喜怒哀乐,以及所有这些非同寻常的现象。
 +
    
当我们将以上任何一种复杂的现象与非常简单的行星围绕太阳公转的规律或手表和苹果手机的计时规律相比的时候,自然会思考:在所有这些复杂性和多样性的背后,有没有可能也存在一种类似的潜在规律呢?是否存在一些令人信服的简单法则,确实是从植物、动物等生物体到城市、公司等所有复杂系统都会遵循的?全球各地的森林、草原和城市中正在上演的一幕幕景象是否都是随机的、变化无常的,是一个又一个的偶然事件吗?鉴于产生多样化结果进化过程的随机性,与直觉不同的是,任何规律或系统性行为的出现似乎都不太可能。毕竟,组成生物圈的每个生物体、每个子系统、每个器官、每个细胞、每个基因都是在独特的历史轨迹上,在与众不同的生态环境中,通过自然选择过程进化而来的。现在,让我们来看看图1~图4。每幅图都呈现一个已知变量与其规模大小的关系,这些变量都在人们的生活中扮演着重要的角色。图1是动物代谢率与其体重的关系图。图2是不同动物一生中的心跳次数与其体重的关系图。图3是一座城市所产生的专利数量与该城市人口的关系图。图4是上市公司的净收入和总资产与其雇员人数的关系图。
 
当我们将以上任何一种复杂的现象与非常简单的行星围绕太阳公转的规律或手表和苹果手机的计时规律相比的时候,自然会思考:在所有这些复杂性和多样性的背后,有没有可能也存在一种类似的潜在规律呢?是否存在一些令人信服的简单法则,确实是从植物、动物等生物体到城市、公司等所有复杂系统都会遵循的?全球各地的森林、草原和城市中正在上演的一幕幕景象是否都是随机的、变化无常的,是一个又一个的偶然事件吗?鉴于产生多样化结果进化过程的随机性,与直觉不同的是,任何规律或系统性行为的出现似乎都不太可能。毕竟,组成生物圈的每个生物体、每个子系统、每个器官、每个细胞、每个基因都是在独特的历史轨迹上,在与众不同的生态环境中,通过自然选择过程进化而来的。现在,让我们来看看图1~图4。每幅图都呈现一个已知变量与其规模大小的关系,这些变量都在人们的生活中扮演着重要的角色。图1是动物代谢率与其体重的关系图。图2是不同动物一生中的心跳次数与其体重的关系图。图3是一座城市所产生的专利数量与该城市人口的关系图。图4是上市公司的净收入和总资产与其雇员人数的关系图。
 +
    
无须成为一名科学家或以上任何一个领域的专家,你马上就可以发现,尽管它们代表了我们在生命中遇到过的最复杂、最多样化的过程,但每幅图都揭示了一些简单、系统性、规律性的东西。在每一幅图中,所有的数据都奇迹般地差不多排列成一条直线,并没有出现任意分布的现象。而我们此前曾预测,由于每一种动物、每一座城市、每一家公司的历史和所处地理环境不同,可能会出现任意分布的状况。或许最令人吃惊的是图1–2,所有哺乳动物一生中的平均心跳次数大致相当,尽管体形较小的老鼠只能存活几年时间,而大型动物鲸则可以存活100年之久。图1~图4中的例子只是为数众多的缩放关系中的一小部分,动物、植物、生态系统、城市和公司中几乎任何可量化的特点都与规模存在可量化的缩放关系,这些显著规律的存在表明,在所有这些迥异的高度复杂现象中,都存在着共同的概念框架——动物、植物、人类社会行为、城市与公司的活力、增长和组织事实上都遵循类似的一般规律。这种宏观性的框架可以帮助我们解决一系列问题:
 
无须成为一名科学家或以上任何一个领域的专家,你马上就可以发现,尽管它们代表了我们在生命中遇到过的最复杂、最多样化的过程,但每幅图都揭示了一些简单、系统性、规律性的东西。在每一幅图中,所有的数据都奇迹般地差不多排列成一条直线,并没有出现任意分布的现象。而我们此前曾预测,由于每一种动物、每一座城市、每一家公司的历史和所处地理环境不同,可能会出现任意分布的状况。或许最令人吃惊的是图1–2,所有哺乳动物一生中的平均心跳次数大致相当,尽管体形较小的老鼠只能存活几年时间,而大型动物鲸则可以存活100年之久。图1~图4中的例子只是为数众多的缩放关系中的一小部分,动物、植物、生态系统、城市和公司中几乎任何可量化的特点都与规模存在可量化的缩放关系,这些显著规律的存在表明,在所有这些迥异的高度复杂现象中,都存在着共同的概念框架——动物、植物、人类社会行为、城市与公司的活力、增长和组织事实上都遵循类似的一般规律。这种宏观性的框架可以帮助我们解决一系列问题:
 +
    
• 为何我们最多只能活到120岁,而不是1 000岁或100万岁?为何我们会死亡?是什么限制了人类的寿命?人们能否通过组成自身肌体的细胞和复杂分子计算出自己的寿命?它们能否被改变?寿命是否可以延长?
 
• 为何我们最多只能活到120岁,而不是1 000岁或100万岁?为何我们会死亡?是什么限制了人类的寿命?人们能否通过组成自身肌体的细胞和复杂分子计算出自己的寿命?它们能否被改变?寿命是否可以延长?
第35行: 第39行:  
== 生命的简单性、一致性与复杂性 ==
 
== 生命的简单性、一致性与复杂性 ==
 
从最小的细菌到最大的城市和生态系统,生命系统是典型的复杂适应系统,运行在范围广阔的多个空间、时间、能量和质量的尺度上。仅在质量规模上,生命便跨越了30个数量级以上,从为新陈代谢和遗传密码提供能量的分子到生态系统和城市。这一范围的广度大大超过了地球的质量与整个银河系的质量之间的比例,后者仅跨越了18个数量级,相当于一个电子的质量与一只老鼠的质量之间的比例。
 
从最小的细菌到最大的城市和生态系统,生命系统是典型的复杂适应系统,运行在范围广阔的多个空间、时间、能量和质量的尺度上。仅在质量规模上,生命便跨越了30个数量级以上,从为新陈代谢和遗传密码提供能量的分子到生态系统和城市。这一范围的广度大大超过了地球的质量与整个银河系的质量之间的比例,后者仅跨越了18个数量级,相当于一个电子的质量与一只老鼠的质量之间的比例。
 +
    
在这一庞大的范围内,生命事实上利用相同的基本构成要素和建造过程创造了令人惊叹的各种各样的形式、功能和动力学行为。所有生命的运行都是通过把物理或化学来源的能量转化为有机分子,这些有机分子通过新陈代谢过程构建、维持和繁殖复杂的、高度组织化的系统。这又是通过两个截然不同而又密切相互作用的系统运行实现的:遗传密码系统(储存及处理构建和维持生物体运作的信息与“指令”)和新陈代谢系统(获取、转化、分配能量和物质,用于维持、增长和繁殖)。人们在从分子到生物体的各个层级阐释这两个系统方面已经取得了很大的进展。然而,想要了解信息处理(基因组学)如何与能量和资源处理(新陈代谢)相互融合以维持生命,却依然是一个巨大的挑战。寻找作为这些系统结构、动力和结合的普遍基础原则是理解生命的根本所在,也是在医学、农业、环境学等不同背景中管理生物和社会经济系统的基础。
 
在这一庞大的范围内,生命事实上利用相同的基本构成要素和建造过程创造了令人惊叹的各种各样的形式、功能和动力学行为。所有生命的运行都是通过把物理或化学来源的能量转化为有机分子,这些有机分子通过新陈代谢过程构建、维持和繁殖复杂的、高度组织化的系统。这又是通过两个截然不同而又密切相互作用的系统运行实现的:遗传密码系统(储存及处理构建和维持生物体运作的信息与“指令”)和新陈代谢系统(获取、转化、分配能量和物质,用于维持、增长和繁殖)。人们在从分子到生物体的各个层级阐释这两个系统方面已经取得了很大的进展。然而,想要了解信息处理(基因组学)如何与能量和资源处理(新陈代谢)相互融合以维持生命,却依然是一个巨大的挑战。寻找作为这些系统结构、动力和结合的普遍基础原则是理解生命的根本所在,也是在医学、农业、环境学等不同背景中管理生物和社会经济系统的基础。
 +
    
=== 潜藏在复杂性下的简单性:网络原理与[[克莱伯定律]]、[[自相似|自相似性]]和[[异速生长律]] ===
 
=== 潜藏在复杂性下的简单性:网络原理与[[克莱伯定律]]、[[自相似|自相似性]]和[[异速生长律]] ===
第48行: 第54行:  
==== 终端单元的恒定性 ====
 
==== 终端单元的恒定性 ====
 
这意味着一个给定网络的终端单元,如我们刚刚讨论过的循环系统中的毛细血管,都有近似相同的尺寸和特点,无论生物体的体形多大。终端单元是网络的重要组成部分,因为它们是能量和资源交换的传输点与分配点。例如植物的叶柄、体内的细胞、细胞内的线粒体。当个体从新生儿成长为成年人时,或者当不同体形大小的新物种进化时,终端单元不会重新改造,也不会重组或重新调节。
 
这意味着一个给定网络的终端单元,如我们刚刚讨论过的循环系统中的毛细血管,都有近似相同的尺寸和特点,无论生物体的体形多大。终端单元是网络的重要组成部分,因为它们是能量和资源交换的传输点与分配点。例如植物的叶柄、体内的细胞、细胞内的线粒体。当个体从新生儿成长为成年人时,或者当不同体形大小的新物种进化时,终端单元不会重新改造,也不会重组或重新调节。
 +
    
终端单元的恒定性可以放在自然选择的节约天性的背景下来了解。毛细血管、线粒体、细胞等是新物种的相应网络的“现成”基石,会相应地进行调节。终端单元的恒定性构成了分类的特性。例如,所有的哺乳动物都有相同的毛细血管。这一类别中的不同物种,如大象、人和老鼠之间的区别就在于网络布局的大小。从这个角度而言,分类之间的差别,即哺乳动物、植物和鱼等之间的差别,是由它们自身不同网络的终端单元的不同特性决定的。尽管所有的哺乳动物都有相似的毛细血管和线粒体,鱼类也同样如此,但哺乳动物的毛细血管和线粒体与鱼的毛细血管和线粒体存在大小及整体特点的不同。
 
终端单元的恒定性可以放在自然选择的节约天性的背景下来了解。毛细血管、线粒体、细胞等是新物种的相应网络的“现成”基石,会相应地进行调节。终端单元的恒定性构成了分类的特性。例如,所有的哺乳动物都有相同的毛细血管。这一类别中的不同物种,如大象、人和老鼠之间的区别就在于网络布局的大小。从这个角度而言,分类之间的差别,即哺乳动物、植物和鱼等之间的差别,是由它们自身不同网络的终端单元的不同特性决定的。尽管所有的哺乳动物都有相似的毛细血管和线粒体,鱼类也同样如此,但哺乳动物的毛细血管和线粒体与鱼的毛细血管和线粒体存在大小及整体特点的不同。
第54行: 第61行:  
==== 优化 ====
 
==== 优化 ====
 
最后一个假设认为,在自然选择过程中隐含的连续的多重反馈和调整机制在过去长期发挥作用,使得网络性能得到了“优化”。举例来说,包括我们人类在内,任何哺乳动物的心脏用来通过循环系统输送血液的平均能量值都最小化,即它是在既定的设计和不同的网络限制条件下能够得到的最小可能。换句话说,在循环系统的架构和动力学的无限种可能中,那些能够进化并最终为所有哺乳动物所共有的充满恒定终端单元的空间是能够将心脏输出最小化的。网络不断进化的结果是维持个体生命、完成生命日常生活任务的能量被最小化,以使得留给性生活、繁殖、抚育后代的能量最大化。这被称作[https://wiki2.org/en/Fitness_(biology) 达尔文适应度 Darwinian Fitness],是普通个体为下一代基因库所做的基因贡献。
 
最后一个假设认为,在自然选择过程中隐含的连续的多重反馈和调整机制在过去长期发挥作用,使得网络性能得到了“优化”。举例来说,包括我们人类在内,任何哺乳动物的心脏用来通过循环系统输送血液的平均能量值都最小化,即它是在既定的设计和不同的网络限制条件下能够得到的最小可能。换句话说,在循环系统的架构和动力学的无限种可能中,那些能够进化并最终为所有哺乳动物所共有的充满恒定终端单元的空间是能够将心脏输出最小化的。网络不断进化的结果是维持个体生命、完成生命日常生活任务的能量被最小化,以使得留给性生活、繁殖、抚育后代的能量最大化。这被称作[https://wiki2.org/en/Fitness_(biology) 达尔文适应度 Darwinian Fitness],是普通个体为下一代基因库所做的基因贡献。
 +
    
优化原则位于自然界所有基本法则的核心,无论是牛顿定律、麦克斯韦的电磁学理论、量子力学、爱因斯坦的相对论,还是基本粒子的大一统理论。它们的现代构成都是一个数学框架,其中一个被称作“作用量”的数值被最小化,这个数值与能量存在松散关系。所有的物理学定律都源自“最小作用量原理”,该原理认为,在一个系统能够拥有或遵循的所有可能配置中,最终得以实现的是作用量最小的那个配置。因此,宇宙自大爆炸以来的动力学、架构和时间演化,来自黑洞及传输手机信息所用的卫星和信息本身,所有的电子、光子、希格斯粒子,以及物理学中的一切,都是由这个优化原则决定的。
 
优化原则位于自然界所有基本法则的核心,无论是牛顿定律、麦克斯韦的电磁学理论、量子力学、爱因斯坦的相对论,还是基本粒子的大一统理论。它们的现代构成都是一个数学框架,其中一个被称作“作用量”的数值被最小化,这个数值与能量存在松散关系。所有的物理学定律都源自“最小作用量原理”,该原理认为,在一个系统能够拥有或遵循的所有可能配置中,最终得以实现的是作用量最小的那个配置。因此,宇宙自大爆炸以来的动力学、架构和时间演化,来自黑洞及传输手机信息所用的卫星和信息本身,所有的电子、光子、希格斯粒子,以及物理学中的一切,都是由这个优化原则决定的。
第60行: 第68行:  
=== 哺乳动物、植物的代谢率和循环系统 ===
 
=== 哺乳动物、植物的代谢率和循环系统 ===
 
ATP是使得我们存活下去的代谢能量的“基本货币”。氧气对维持ATP分子的持续供给而言十分重要,这是我们必须持续呼吸的原因。吸入的氧气被输送到我们布满毛细血管的肺部的表面膜上,并被我们的血液吸收,继而通过心血管系统输送到我们的细胞中。氧分子和血液细胞中充当氧气载体的富含铁元素的血红蛋白结合在一起。这个氧化过程使我们的血液呈红色,正如铁在空气中氧化成铁锈一样。在血液将氧气输送到细胞中后,红色就变成了浅蓝色,这是静脉呈蓝色的原因。
 
ATP是使得我们存活下去的代谢能量的“基本货币”。氧气对维持ATP分子的持续供给而言十分重要,这是我们必须持续呼吸的原因。吸入的氧气被输送到我们布满毛细血管的肺部的表面膜上,并被我们的血液吸收,继而通过心血管系统输送到我们的细胞中。氧分子和血液细胞中充当氧气载体的富含铁元素的血红蛋白结合在一起。这个氧化过程使我们的血液呈红色,正如铁在空气中氧化成铁锈一样。在血液将氧气输送到细胞中后,红色就变成了浅蓝色,这是静脉呈蓝色的原因。
 +
    
因此,氧气输送到细胞的速度及血液通过循环系统传输的速度也就成了我们代谢率的指标。同样地,氧气吸入我们口中的速度及其进入呼吸系统的速度也是代谢率的指标。这两个系统紧密相连,血流速度、呼吸速度和代谢率都彼此互成比例,存在简单的线性关系。因此,无论哺乳动物的体形有多大,每呼吸一次,均心跳四次。氧气运输系统的紧密相连就是心血管网络与呼吸网络的特点在决定和约束代谢率中起重要作用的原因。
 
因此,氧气输送到细胞的速度及血液通过循环系统传输的速度也就成了我们代谢率的指标。同样地,氧气吸入我们口中的速度及其进入呼吸系统的速度也是代谢率的指标。这两个系统紧密相连,血流速度、呼吸速度和代谢率都彼此互成比例,存在简单的线性关系。因此,无论哺乳动物的体形有多大,每呼吸一次,均心跳四次。氧气运输系统的紧密相连就是心血管网络与呼吸网络的特点在决定和约束代谢率中起重要作用的原因。
 +
    
利用能量将血液输送到循环系统的脉管系统内的速度被称作心脏输出功率。所消耗的这一能量被用于克服血液流经不断变窄的血管时产生的黏滞力或摩擦力。在整个旅程中,血液首先从主动脉出发,这是距离心脏最近的动脉,其次流经多重网络,最后到达为细胞供给养分的毛细血管。人类的主动脉类似一个圆柱形的管道,长约18英寸(约45厘米),直径约为1英寸(约2.5厘米),而我们的毛细血管只有5微米(约0.01英寸)粗,比一根头发丝还要细。[13]尽管一头蓝鲸的主动脉的直径几乎达到1英尺(30厘米),但它的毛细血管的粗细和你我的相同。这就是这些网络的终端单元恒定性的例子。
 
利用能量将血液输送到循环系统的脉管系统内的速度被称作心脏输出功率。所消耗的这一能量被用于克服血液流经不断变窄的血管时产生的黏滞力或摩擦力。在整个旅程中,血液首先从主动脉出发,这是距离心脏最近的动脉,其次流经多重网络,最后到达为细胞供给养分的毛细血管。人类的主动脉类似一个圆柱形的管道,长约18英寸(约45厘米),直径约为1英寸(约2.5厘米),而我们的毛细血管只有5微米(约0.01英寸)粗,比一根头发丝还要细。[13]尽管一头蓝鲸的主动脉的直径几乎达到1英尺(30厘米),但它的毛细血管的粗细和你我的相同。这就是这些网络的终端单元恒定性的例子。
 +
    
假设是,网络结构已经进化到可以使心脏输出最小化,即输送血液至系统所需的能量最小化。对像我们的心脏这样的由脉动驱动流动的任意网络而言,除了血液流经毛细血管和小血管时的黏滞力外,还有另一个潜在的能量损失来源。这是来自其脉动性质的微妙影响,恰好表明了我们因优化性能而产生的心血管系统设计的美妙之处。
 
假设是,网络结构已经进化到可以使心脏输出最小化,即输送血液至系统所需的能量最小化。对像我们的心脏这样的由脉动驱动流动的任意网络而言,除了血液流经毛细血管和小血管时的黏滞力外,还有另一个潜在的能量损失来源。这是来自其脉动性质的微妙影响,恰好表明了我们因优化性能而产生的心血管系统设计的美妙之处。
 +
    
当血液离开心脏时,它会通过由心脏跳动引发的波动沿着主动脉流动。这一波动的频率与心率一致,大约为每分钟60次。主动脉又分为两个动脉,当血液抵达第一个分支点时,一些血液流向其中一个通道,另一些血液则流向另一个通道,都是以波动的形式流动的。波动的特点是,当遭遇障碍时会产生反射,镜子是最明显的例子。光线是一种电磁波,因此,你所看到的图像只是镜子表面对源自你身体的光波的反射。其他常见的例子还包括水波在遇到障碍时的反射或者声波遭遇硬表面时反射的回声。
 
当血液离开心脏时,它会通过由心脏跳动引发的波动沿着主动脉流动。这一波动的频率与心率一致,大约为每分钟60次。主动脉又分为两个动脉,当血液抵达第一个分支点时,一些血液流向其中一个通道,另一些血液则流向另一个通道,都是以波动的形式流动的。波动的特点是,当遭遇障碍时会产生反射,镜子是最明显的例子。光线是一种电磁波,因此,你所看到的图像只是镜子表面对源自你身体的光波的反射。其他常见的例子还包括水波在遇到障碍时的反射或者声波遭遇硬表面时反射的回声。
 +
    
相类似的是,在主动脉中传输的血液波在遭遇到分支点时会部分反射,剩余的血液会继续传输至子动脉。这些反射可能会带来很糟糕的后果,因为它们意味着你的心脏其实是在对自己泵血。此外,随着血液沿着不同层级的血管流动,在网络的每一个分支点都会产生相同的现象,上述效应会大大增强,你的心脏需要支出大量能量来克服这些多重反射。这是一个极端低效的设计,为心脏带来了巨大的负担,也浪费了很多能量。
 
相类似的是,在主动脉中传输的血液波在遭遇到分支点时会部分反射,剩余的血液会继续传输至子动脉。这些反射可能会带来很糟糕的后果,因为它们意味着你的心脏其实是在对自己泵血。此外,随着血液沿着不同层级的血管流动,在网络的每一个分支点都会产生相同的现象,上述效应会大大增强,你的心脏需要支出大量能量来克服这些多重反射。这是一个极端低效的设计,为心脏带来了巨大的负担,也浪费了很多能量。
 +
    
为了避免这一潜在的问题,并尽量减少我们心脏必须承担的工作,我们的循环系统的几何结构不断进化,使得网络中的任何分支点都不存在反射现象。有关这一点如何实现的数学原理和物理学原理有些复杂,但结果是简单明了的:该理论预测认为,如果从分支点出发的子血管的横截面面积总和与抵达分支点的母血管的横截面面积总和相等,那么在任何分支点都不会出现反射。
 
为了避免这一潜在的问题,并尽量减少我们心脏必须承担的工作,我们的循环系统的几何结构不断进化,使得网络中的任何分支点都不存在反射现象。有关这一点如何实现的数学原理和物理学原理有些复杂,但结果是简单明了的:该理论预测认为,如果从分支点出发的子血管的横截面面积总和与抵达分支点的母血管的横截面面积总和相等,那么在任何分支点都不会出现反射。
 +
    
所谓的等面积分支其实就是我们的循环系统构建的方式,这已经由对许多哺乳动物、植物的详细测量数据证实。植物虽然没有心跳,通过维管系统的流动是稳定的、非搏动性的,但它们的维管就像搏动性的循环系统一样按比例变化,这乍看上去有些令人吃惊。然而,如果你把树木看作一捆紧紧捆绑在一起的纤维,从树干开始,继而延伸至它的枝杈,整个分级结构的横截面面积就必须保持一致。图3–8展示了这一纤维束结构与哺乳动物的管道结构的比较。等面积分支的有趣结果便是,树干的横截面面积与网络末端(叶柄)所有小枝杈的横截面面积总和相当。令人吃惊的是,达·芬奇知道这一点。我复制了他的笔记本中重要的一页,他在这一页中呈现了这个事实,如图3–9所示。
 
所谓的等面积分支其实就是我们的循环系统构建的方式,这已经由对许多哺乳动物、植物的详细测量数据证实。植物虽然没有心跳,通过维管系统的流动是稳定的、非搏动性的,但它们的维管就像搏动性的循环系统一样按比例变化,这乍看上去有些令人吃惊。然而,如果你把树木看作一捆紧紧捆绑在一起的纤维,从树干开始,继而延伸至它的枝杈,整个分级结构的横截面面积就必须保持一致。图3–8展示了这一纤维束结构与哺乳动物的管道结构的比较。等面积分支的有趣结果便是,树干的横截面面积与网络末端(叶柄)所有小枝杈的横截面面积总和相当。令人吃惊的是,达·芬奇知道这一点。我复制了他的笔记本中重要的一页,他在这一页中呈现了这个事实,如图3–9所示。
 +
    
尽管这个简单的几何图形显示出了树木遵循等面积分支的原因,但它还是过于简单了。然而,利用此前提及的空间填充和优化网络通用原则,再加上生物力学的限制要求枝杈有足够的韧性以抵御风的扰动,使其能够弯曲不受到损害,可以通过更加现实的树木模型推导出等面积分支法则。这一分析表明,植物同哺乳动物一样按比例变化,无论在个体内部还是在不同的物种之间,包括代谢率的3/4幂律,即使它们的物理结构完全不同。<ref>E.A. Guggenheim, J. Chem. Phys. '''13''' (1945) 253.</ref>
 
尽管这个简单的几何图形显示出了树木遵循等面积分支的原因,但它还是过于简单了。然而,利用此前提及的空间填充和优化网络通用原则,再加上生物力学的限制要求枝杈有足够的韧性以抵御风的扰动,使其能够弯曲不受到损害,可以通过更加现实的树木模型推导出等面积分支法则。这一分析表明,植物同哺乳动物一样按比例变化,无论在个体内部还是在不同的物种之间,包括代谢率的3/4幂律,即使它们的物理结构完全不同。<ref>E.A. Guggenheim, J. Chem. Phys. '''13''' (1945) 253.</ref>
第80行: 第96行:  
== 城市和公司是大型的生物体吗? ==
 
== 城市和公司是大型的生物体吗? ==
 
我们所提出的网络理论可以为理解规模法则以及定量解决生物学中一系列不同问题提供总体概念框架,但它也会很自然地带来下面这样的问题:这一框架是否可以延伸并用于理解其他网络系统,如城市和公司。从表面上看,它们与生命体和生态系统存在许多共同点:毕竟,它们也会代谢能量和资源,产生废弃物,处理信息,生长、适应并进化,感染疾病,甚至会发展出肿瘤并不断扩大。此外,它们也变老,几乎所有公司最终都会消亡,但对于城市而言,只有极少数会消亡。
 
我们所提出的网络理论可以为理解规模法则以及定量解决生物学中一系列不同问题提供总体概念框架,但它也会很自然地带来下面这样的问题:这一框架是否可以延伸并用于理解其他网络系统,如城市和公司。从表面上看,它们与生命体和生态系统存在许多共同点:毕竟,它们也会代谢能量和资源,产生废弃物,处理信息,生长、适应并进化,感染疾病,甚至会发展出肿瘤并不断扩大。此外,它们也变老,几乎所有公司最终都会消亡,但对于城市而言,只有极少数会消亡。
 +
    
类似于生物网络的三条上述假设,城市中的许多基础设施网络也是空间填充的,例如,天然气、水和电等公用事业网络的终端单元或终点都必须为构成城市的所有不同建筑物提供供给。连接你的房屋与城市水路和电路的管道就像毛细血管,可以把你的房屋想象成细胞。与此相似的是,公司的所有雇员都可以被看作终端单元,他们必须通过连接首席执行官与管理层的多重网络获得资源(如工资)和信息的供给。
 
类似于生物网络的三条上述假设,城市中的许多基础设施网络也是空间填充的,例如,天然气、水和电等公用事业网络的终端单元或终点都必须为构成城市的所有不同建筑物提供供给。连接你的房屋与城市水路和电路的管道就像毛细血管,可以把你的房屋想象成细胞。与此相似的是,公司的所有雇员都可以被看作终端单元,他们必须通过连接首席执行官与管理层的多重网络获得资源(如工资)和信息的供给。
 +
    
服务并支持城市建筑物的网络终端单元,如电源插座或水龙头,同样是近似恒定的。例如,你家中的电源插座和世界上任何地方的任何建筑物中的电源插座都是相同的,无论建筑物是大是小。或许在细节设计上存在差异,但它们的尺寸都是相同的。即使是纽约市的帝国大厦和迪拜、上海或圣保罗等地比你家房屋高50多倍的建筑物,其内的电源插座和水龙头与你家的也都是十分相似的。如果电源插座随着建筑物的高度而等体积地成比例变化,那么,帝国大厦中的电源插座将会是你家中电源插座的50多倍大,它将会有超过10英尺高、3英尺宽,而非几英寸。正如在生物学中一样,基本的终端单元,如电源插座和水龙头不会因我们设计新建筑物而每次都进行改造,无论这些建筑物地处何方,体积多大。
 
服务并支持城市建筑物的网络终端单元,如电源插座或水龙头,同样是近似恒定的。例如,你家中的电源插座和世界上任何地方的任何建筑物中的电源插座都是相同的,无论建筑物是大是小。或许在细节设计上存在差异,但它们的尺寸都是相同的。即使是纽约市的帝国大厦和迪拜、上海或圣保罗等地比你家房屋高50多倍的建筑物,其内的电源插座和水龙头与你家的也都是十分相似的。如果电源插座随着建筑物的高度而等体积地成比例变化,那么,帝国大厦中的电源插座将会是你家中电源插座的50多倍大,它将会有超过10英尺高、3英尺宽,而非几英寸。正如在生物学中一样,基本的终端单元,如电源插座和水龙头不会因我们设计新建筑物而每次都进行改造,无论这些建筑物地处何方,体积多大。
 +
    
这很自然地引出以下问题:城市与公司的动力学和架构是否也是类似的优化原则的结果?在它们的多重网络系统中,得到优化的是什么?城市的组织是为了使社会互动最大化吗?通过移动时间最小化来优化交通吗?它们是否最终受到每个公民、每家公司都要将自己的资产、利益和财富最大化的野心驱动?
 
这很自然地引出以下问题:城市与公司的动力学和架构是否也是类似的优化原则的结果?在它们的多重网络系统中,得到优化的是什么?城市的组织是为了使社会互动最大化吗?通过移动时间最小化来优化交通吗?它们是否最终受到每个公民、每家公司都要将自己的资产、利益和财富最大化的野心驱动?
7,129

个编辑