更改

添加107字节 、 2022年3月3日 (四) 11:17
第11行: 第11行:  
生物地球化学循环是化学物质在地球的生物隔室和非生物隔室中进行循环(被转化或穿过)的过程。生物隔室指生物圈,非生物隔室指大气圈、水圈和岩石圈。其包括化学元素的生物地球化学循环,如钙、碳、氢、汞、氮、氧、磷、硒、铁和硫,以及分子循环,如水和硅。同时也包括宏观循环,如岩石的循环,以及人为诱导的合成化合物的循环,如多氯联苯(PCBs)的循环。某些循环中存在有储库,储库能使一种物质得以长时间保留或被隔离。
 
生物地球化学循环是化学物质在地球的生物隔室和非生物隔室中进行循环(被转化或穿过)的过程。生物隔室指生物圈,非生物隔室指大气圈、水圈和岩石圈。其包括化学元素的生物地球化学循环,如钙、碳、氢、汞、氮、氧、磷、硒、铁和硫,以及分子循环,如水和硅。同时也包括宏观循环,如岩石的循环,以及人为诱导的合成化合物的循环,如多氯联苯(PCBs)的循环。某些循环中存在有储库,储库能使一种物质得以长时间保留或被隔离。
   −
==Overview==
+
==Overview 概要==
 
[[File:Generalized biogeochemical cycle.jpg|thumb|upright=1.2| {{center|Generalized biogeochemical cycle{{hsp}}<ref name=Moses2012 />}}]]
 
[[File:Generalized biogeochemical cycle.jpg|thumb|upright=1.2| {{center|Generalized biogeochemical cycle{{hsp}}<ref name=Moses2012 />}}]]
   第88行: 第88行:  
生物地球化学循环可以与地球化学循环形成对比。尽管两者的部分过程是重叠的,地球化学循环仅涉及地壳和地下储库。
 
生物地球化学循环可以与地球化学循环形成对比。尽管两者的部分过程是重叠的,地球化学循环仅涉及地壳和地下储库。
   −
== Reservoirs ==
+
== Reservoirs 储库 ==
 
The chemicals are sometimes held for long periods of time in one place. This place is called a ''reservoir'', which, for example, includes such things as [[coal]] deposits that are storing [[carbon]] for a long period of time.<ref name="carbon">{{cite web|last1=Baedke|first1=Steve J.|last2=Fichter|first2=Lynn S.|title=Biogeochemical Cycles: Carbon Cycle|url=http://csmgeo.csm.jmu.edu/geollab/idls/carboncycle.htm|website=Supplimental Lecture Notes for Geol 398|publisher=James Madison University|access-date=20 November 2017|archive-date=1 December 2017|archive-url=https://web.archive.org/web/20171201043948/http://csmgeo.csm.jmu.edu/geollab/idls/carboncycle.htm|url-status=live}}</ref> When chemicals are held for only short periods of time, they are being held in ''exchange pools''. Examples of exchange pools include plants and animals.<ref name="carbon" />
 
The chemicals are sometimes held for long periods of time in one place. This place is called a ''reservoir'', which, for example, includes such things as [[coal]] deposits that are storing [[carbon]] for a long period of time.<ref name="carbon">{{cite web|last1=Baedke|first1=Steve J.|last2=Fichter|first2=Lynn S.|title=Biogeochemical Cycles: Carbon Cycle|url=http://csmgeo.csm.jmu.edu/geollab/idls/carboncycle.htm|website=Supplimental Lecture Notes for Geol 398|publisher=James Madison University|access-date=20 November 2017|archive-date=1 December 2017|archive-url=https://web.archive.org/web/20171201043948/http://csmgeo.csm.jmu.edu/geollab/idls/carboncycle.htm|url-status=live}}</ref> When chemicals are held for only short periods of time, they are being held in ''exchange pools''. Examples of exchange pools include plants and animals.<ref name="carbon" />
   第101行: 第101行:  
动植物利用碳来生产碳水化合物、脂肪和蛋白质,这些可之后被用于构建它们的内部结构或获取能量。植物和动物短暂地使用它们系统中的碳,随后将其释放到空气或周围的介质中。一般来说,储库是非生物因子,交换池是生物因子。与煤炭层相比,碳在动植物体内只保存相对较短的一段时间。一种化学物质在一个地方保留的时间被称为其停留时间或周转时间(也称为更新时间或退出时间)。
 
动植物利用碳来生产碳水化合物、脂肪和蛋白质,这些可之后被用于构建它们的内部结构或获取能量。植物和动物短暂地使用它们系统中的碳,随后将其释放到空气或周围的介质中。一般来说,储库是非生物因子,交换池是生物因子。与煤炭层相比,碳在动植物体内只保存相对较短的一段时间。一种化学物质在一个地方保留的时间被称为其停留时间或周转时间(也称为更新时间或退出时间)。
   −
==Box models==
+
==Box models 箱模型==
 
{{see also|Climate box models}}
 
{{see also|Climate box models}}
 
[[File:Simple box model.png|thumb|upright=1|right| {{center|'''Basic one-box model'''}}]]
 
[[File:Simple box model.png|thumb|upright=1|right| {{center|'''Basic one-box model'''}}]]
第179行: 第179行:  
= = 隔室 = =  
 
= = 隔室 = =  
   −
===Biosphere===
+
===Biosphere 生物圈===
 
[[File:Role of marine organisms in biogeochemical cycling.jpg|thumb|upright=2.1| {{center|Role of marine organisms in biogeochemical cycling in the Southern Ocean{{hsp}}<ref name=Henley2020>{{cite journal |title = Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications|year = 2020|doi = 10.3389/fmars.2020.00581|doi-access = free|last1 = Henley|first1 = Sian F.|last2 = Cavan|first2 = Emma L.|last3 = Fawcett|first3 = Sarah E.|last4 = Kerr|first4 = Rodrigo|last5 = Monteiro|first5 = Thiago|last6 = Sherrell|first6 = Robert M.|last7 = Bowie|first7 = Andrew R.|last8 = Boyd|first8 = Philip W.|last9 = Barnes|first9 = David K. A.|last10 = Schloss|first10 = Irene R.|last11 = Marshall|first11 = Tanya|last12 = Flynn|first12 = Raquel|last13 = Smith|first13 = Shantelle|journal = Frontiers in Marine Science|volume = 7}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License] {{Webarchive|url=https://web.archive.org/web/20171016050101/https://creativecommons.org/licenses/by/4.0/ |date=2017-10-16 }}.</ref>}}]]
 
[[File:Role of marine organisms in biogeochemical cycling.jpg|thumb|upright=2.1| {{center|Role of marine organisms in biogeochemical cycling in the Southern Ocean{{hsp}}<ref name=Henley2020>{{cite journal |title = Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications|year = 2020|doi = 10.3389/fmars.2020.00581|doi-access = free|last1 = Henley|first1 = Sian F.|last2 = Cavan|first2 = Emma L.|last3 = Fawcett|first3 = Sarah E.|last4 = Kerr|first4 = Rodrigo|last5 = Monteiro|first5 = Thiago|last6 = Sherrell|first6 = Robert M.|last7 = Bowie|first7 = Andrew R.|last8 = Boyd|first8 = Philip W.|last9 = Barnes|first9 = David K. A.|last10 = Schloss|first10 = Irene R.|last11 = Marshall|first11 = Tanya|last12 = Flynn|first12 = Raquel|last13 = Smith|first13 = Shantelle|journal = Frontiers in Marine Science|volume = 7}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License] {{Webarchive|url=https://web.archive.org/web/20171016050101/https://creativecommons.org/licenses/by/4.0/ |date=2017-10-16 }}.</ref>}}]]
 
{{main|Biosphere}}
 
{{main|Biosphere}}
第191行: 第191行:  
微生物驱动了地球系统中大部分的生物地球化学循环。
 
微生物驱动了地球系统中大部分的生物地球化学循环。
   −
===Atmosphere===
+
===Atmosphere 大气圈===
 
{{main|Atmosphere}}
 
{{main|Atmosphere}}
   −
===Hydrosphere===
+
===Hydrosphere 水圈===
 
{{main|Hydrosphere}}
 
{{main|Hydrosphere}}
   第209行: 第209行:  
因此,全球变化正在影响着关键过程,包括净初级生产力,CO<sub>2</sub>和N<sub>2</sub>固定,有机物呼吸/再矿化以及固定CO<sub>2</sub>的沉积和埋藏。除此之外,海洋正在经历酸化过程,从前工业化时期到如今pH值变化了约0.1个单位,影响了碳酸盐和碳酸氢盐缓冲的化学过程。反过来,酸化主要通过对钙化类群的影响从而影响浮游生物群落。还有证据表明,关键的中间挥发性产物的生产过程发生了变化,其中一些产物具有明显的温室效应(例如N<sub>2</sub>O和CH<sup>4</sup>,Breitburg在2018年的综述中所言。由于全球温度升高,海洋分层和脱氧,在所谓的最低含氧区或缺氧海洋区由于微生物的驱动导致大洋中25%-50%的氮损失到大气中)。其它对海洋自游生物有毒的产物,包括诸如H<sub>2</sub>S等硫的还原产物,对渔业和沿海水产养殖等海洋资源有负面影响。虽然全球变化加速,但人们对海洋生态系统复杂性的认识也在同步提高,尤其是微生物作为生态系统功能驱动因素的基本作用。
 
因此,全球变化正在影响着关键过程,包括净初级生产力,CO<sub>2</sub>和N<sub>2</sub>固定,有机物呼吸/再矿化以及固定CO<sub>2</sub>的沉积和埋藏。除此之外,海洋正在经历酸化过程,从前工业化时期到如今pH值变化了约0.1个单位,影响了碳酸盐和碳酸氢盐缓冲的化学过程。反过来,酸化主要通过对钙化类群的影响从而影响浮游生物群落。还有证据表明,关键的中间挥发性产物的生产过程发生了变化,其中一些产物具有明显的温室效应(例如N<sub>2</sub>O和CH<sup>4</sup>,Breitburg在2018年的综述中所言。由于全球温度升高,海洋分层和脱氧,在所谓的最低含氧区或缺氧海洋区由于微生物的驱动导致大洋中25%-50%的氮损失到大气中)。其它对海洋自游生物有毒的产物,包括诸如H<sub>2</sub>S等硫的还原产物,对渔业和沿海水产养殖等海洋资源有负面影响。虽然全球变化加速,但人们对海洋生态系统复杂性的认识也在同步提高,尤其是微生物作为生态系统功能驱动因素的基本作用。
   −
===Lithosphere===
+
===Lithosphere 岩石圈===
 
{{main|Lithosphere}}
 
{{main|Lithosphere}}
   −
==Fast and slow cycles==
+
==Fast and slow cycles 快速和慢速循环==
 
There are fast and slow biogeochemical cycles. Fast cycle operate in the [[biosphere]] and slow cycles operate in [[rock (geology)|rocks]]. Fast or biological cycles can complete within years, moving substances from atmosphere to biosphere, then back to the atmosphere. Slow or geological cycles can take millions of years to complete, moving substances through the Earth's [[Earth's crust|crust]] between rocks, soil, ocean and atmosphere.<ref name=Libes2015>Libes, Susan M. (2015). [https://books.google.com/books?hl=en&lr=&id=5tC9CgAAQBAJ&oi=fnd&pg=PA89&dq=%22blue+planet%22+libes&ots=oesDSXq1NZ&sig=B7HrLG0Y6iE9p_AqfDfSVktQGN4#v=onepage&q=%22blue%20planet%22%20libes&f=false Blue planet: The role of the oceans in nutrient cycling, maintain the atmosphere system, and modulating climate change] {{Webarchive|url=https://web.archive.org/web/20210120070507/https://books.google.com/books?hl=en&lr=&id=5tC9CgAAQBAJ&oi=fnd&pg=PA89&dq=%22blue+planet%22+libes&ots=oesDSXq1NZ&sig=B7HrLG0Y6iE9p_AqfDfSVktQGN4#v=onepage&q=%22blue%20planet%22%20libes&f=false |date=2021-01-20 }} In: ''Routledge Handbook of Ocean Resources and Management'', Routledge, pages 89–107. {{isbn|9781136294822}}.</ref>
 
There are fast and slow biogeochemical cycles. Fast cycle operate in the [[biosphere]] and slow cycles operate in [[rock (geology)|rocks]]. Fast or biological cycles can complete within years, moving substances from atmosphere to biosphere, then back to the atmosphere. Slow or geological cycles can take millions of years to complete, moving substances through the Earth's [[Earth's crust|crust]] between rocks, soil, ocean and atmosphere.<ref name=Libes2015>Libes, Susan M. (2015). [https://books.google.com/books?hl=en&lr=&id=5tC9CgAAQBAJ&oi=fnd&pg=PA89&dq=%22blue+planet%22+libes&ots=oesDSXq1NZ&sig=B7HrLG0Y6iE9p_AqfDfSVktQGN4#v=onepage&q=%22blue%20planet%22%20libes&f=false Blue planet: The role of the oceans in nutrient cycling, maintain the atmosphere system, and modulating climate change] {{Webarchive|url=https://web.archive.org/web/20210120070507/https://books.google.com/books?hl=en&lr=&id=5tC9CgAAQBAJ&oi=fnd&pg=PA89&dq=%22blue+planet%22+libes&ots=oesDSXq1NZ&sig=B7HrLG0Y6iE9p_AqfDfSVktQGN4#v=onepage&q=%22blue%20planet%22%20libes&f=false |date=2021-01-20 }} In: ''Routledge Handbook of Ocean Resources and Management'', Routledge, pages 89–107. {{isbn|9781136294822}}.</ref>
   第245行: 第245行:  
慢速循环如右上图所示,它涉及到岩石循环中的中长期地球化学过程。海洋和大气之间的交换可能需要几个世纪,而岩石的风化可能需要数百万年。海洋中的碳沉积在海底,在那里形成沉积岩并潜入地幔。造山运动使得这种地质碳回到地表。在地表,岩石被风化,碳通过脱气作用返回大气,通过河流返回海洋。其它的地质碳通过含钙离子热液的排放回到海洋。在一年中,有一千万至一亿吨的碳在这个缓慢的循环中移动。这包括火山将地质碳以二氧化碳的形式直接返还大气。然而,这还不足燃烧化石燃料排放到大气中的二氧化碳的百分之一。
 
慢速循环如右上图所示,它涉及到岩石循环中的中长期地球化学过程。海洋和大气之间的交换可能需要几个世纪,而岩石的风化可能需要数百万年。海洋中的碳沉积在海底,在那里形成沉积岩并潜入地幔。造山运动使得这种地质碳回到地表。在地表,岩石被风化,碳通过脱气作用返回大气,通过河流返回海洋。其它的地质碳通过含钙离子热液的排放回到海洋。在一年中,有一千万至一亿吨的碳在这个缓慢的循环中移动。这包括火山将地质碳以二氧化碳的形式直接返还大气。然而,这还不足燃烧化石燃料排放到大气中的二氧化碳的百分之一。
   −
==Deep cycles==
+
==Deep cycles 深层循环==
 
{{further|Deep carbon cycle}}
 
{{further|Deep carbon cycle}}
   第254行: 第254行:  
陆地地下是地球上最大的碳储库,含有14-135Pg的碳和总生物量的2-19%。微生物在这种环境下驱动有机和无机化合物的转化,从而控制生物地球化学循环。目前对于地下微生物生态学的了解主要是基于16S核糖体RNA(rRNA)基因序列。最近的估计显示,公共数据库中小于8%的16S rRNA序列来自于地下生物,且其中仅一小部分由基因组或分离物表示。因此,关于地下微生物代谢的可靠信息非常少。此外,关于地下生态系统中的生物体是如何在新陈代谢上互相关联的,我们知之甚少。一些基于栽培的同养群落研究和对自然群落的小规模宏基因组学分析表明,生物体通过代谢传递相联系:一个生物的氧化还原产物转移到另一生物。然而,还没有一个复杂的环境被彻底剖析,以解决支撑它们的代谢相互作用网络。这限制了生物地球化学模型捕捉碳和其他养分循环关键方面的能力。新的方法,如基因组解析宏基因组学,可以在无需实验室分离的情况下为生物体提供一套全面的草图甚至是完整的基因组,这种方法或许是理解生物地球化学过程的关键。
 
陆地地下是地球上最大的碳储库,含有14-135Pg的碳和总生物量的2-19%。微生物在这种环境下驱动有机和无机化合物的转化,从而控制生物地球化学循环。目前对于地下微生物生态学的了解主要是基于16S核糖体RNA(rRNA)基因序列。最近的估计显示,公共数据库中小于8%的16S rRNA序列来自于地下生物,且其中仅一小部分由基因组或分离物表示。因此,关于地下微生物代谢的可靠信息非常少。此外,关于地下生态系统中的生物体是如何在新陈代谢上互相关联的,我们知之甚少。一些基于栽培的同养群落研究和对自然群落的小规模宏基因组学分析表明,生物体通过代谢传递相联系:一个生物的氧化还原产物转移到另一生物。然而,还没有一个复杂的环境被彻底剖析,以解决支撑它们的代谢相互作用网络。这限制了生物地球化学模型捕捉碳和其他养分循环关键方面的能力。新的方法,如基因组解析宏基因组学,可以在无需实验室分离的情况下为生物体提供一套全面的草图甚至是完整的基因组,这种方法或许是理解生物地球化学过程的关键。
   −
==Some examples==
+
==Some examples 一些案例==
 
Some of the more well-known biogeochemical cycles are shown below:
 
Some of the more well-known biogeochemical cycles are shown below:
   第281行: 第281行:       −
文件: 碳循环-可爱的图解. svg | alt = 碳循环图 | 碳循环文件: 氮循环。氮循环图 | 氮循环文件: whaleump.jpg | alt = 营养循环图 | 营养循环文件: p Cycle.png | alt = 磷循环循环图 | 磷循环循环文件: 硫循环(Ciclo do Enxofre)。硫循环图 | 硫循环图 | 岩石循环图 | 岩石循环图 | 水循环图 | 水循环图
+
文件: 碳循环. svg | alt = 碳循环图 | 碳循环文件: 氮循环。氮循环图 | 氮循环文件: whaleump.jpg | alt = 营养循环图 | 营养循环文件: p Cycle.png | alt = 磷循环循环图 | 磷循环循环文件: 硫循环(Ciclo do Enxofre)。硫循环图 | 硫循环图 | 岩石循环图 | 岩石循环图 | 水循环图 | 水循环图
    
{{clear}}
 
{{clear}}
第321行: 第321行:  
由于生物地球化学循环描述了整个地球上物质的运动,其研究本质上是多学科的。碳循环可能与生态学和大气科学研究有关。生化动力学也与地质学和土壤学领域有关。
 
由于生物地球化学循环描述了整个地球上物质的运动,其研究本质上是多学科的。碳循环可能与生态学和大气科学研究有关。生化动力学也与地质学和土壤学领域有关。
   −
==History==
+
==History 历史==
 
[[File:1934-V I Vernadsky.jpg|thumb|upright=0.9| {{center|[[Vladimir Vernadsky]] 1934<br />father of biogeochemistry{{hsp}}<ref name=Bianchi2021>{{cite journal |doi = 10.1007/s10533-020-00708-0|title = The evolution of biogeochemistry: Revisited|year = 2021|last1 = Bianchi|first1 = Thomas S.|journal = Biogeochemistry|volume = 154|issue = 2|pages = 141–181|s2cid = 227165026}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License] {{Webarchive|url=https://web.archive.org/web/20171016050101/https://creativecommons.org/licenses/by/4.0/ |date=2017-10-16 }}.</ref>}}]]
 
[[File:1934-V I Vernadsky.jpg|thumb|upright=0.9| {{center|[[Vladimir Vernadsky]] 1934<br />father of biogeochemistry{{hsp}}<ref name=Bianchi2021>{{cite journal |doi = 10.1007/s10533-020-00708-0|title = The evolution of biogeochemistry: Revisited|year = 2021|last1 = Bianchi|first1 = Thomas S.|journal = Biogeochemistry|volume = 154|issue = 2|pages = 141–181|s2cid = 227165026}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License] {{Webarchive|url=https://web.archive.org/web/20171016050101/https://creativecommons.org/licenses/by/4.0/ |date=2017-10-16 }}.</ref>}}]]
 
{{Quote box
 
{{Quote box
第356行: 第356行:       −
= = = =  
+
= = 另见 = =  
 
* 碳酸盐-硅酸盐循环  
 
* 碳酸盐-硅酸盐循环  
 
* 生态循环  
 
* 生态循环  
20

个编辑