更改

删除1,947字节 、 2022年3月27日 (日) 22:49
第二段
第1行: 第1行:  
此词条暂由彩云小译翻译,翻译字数共1727,正在由[[用户:Llk|用户Llk]]进行审阅,带来阅读不便,请见谅。
 
此词条暂由彩云小译翻译,翻译字数共1727,正在由[[用户:Llk|用户Llk]]进行审阅,带来阅读不便,请见谅。
  −
{{for|electronics|Flip-flop (electronics)|Multivibrator}}
  −
{{Use dmy dates|date=January 2021}}
      
[[Image:Bistability graph.svg|thumb|upright=1.4|A graph of the [[potential energy]] of a bistable system; it has two local minima <math>x_1</math> and <math>x_2</math>.  A surface shaped like this with two "low points" can act as a bistable system; a ball resting on the surface can only be stable at those two positions, such as balls marked "1" and "2".  Between the two is a local maximum <math>x_3</math>. A ball located at this point, ball 3, is in equilibrium but unstable; the slightest disturbance will cause it to move to one of the stable points.]]
 
[[Image:Bistability graph.svg|thumb|upright=1.4|A graph of the [[potential energy]] of a bistable system; it has two local minima <math>x_1</math> and <math>x_2</math>.  A surface shaped like this with two "low points" can act as a bistable system; a ball resting on the surface can only be stable at those two positions, such as balls marked "1" and "2".  Between the two is a local maximum <math>x_3</math>. A ball located at this point, ball 3, is in equilibrium but unstable; the slightest disturbance will cause it to move to one of the stable points.]]
      −
若一个[[动力学系统]]有两个稳定的平衡态,则该系统具有'''<font color="#ff8000"> 双稳性Bistability</font>'''<ref name="Morris">{{cite book
+
若一个[[动力学系统]]有两个稳定的平衡态,则称该系统具有'''<font color="#ff8000"> 双稳性Bistability</font>'''<ref name="Morris">{{cite book
 
  | last1  = Morris
 
  | last1  = Morris
 
  | first1 =  Christopher G.  
 
  | first1 =  Christopher G.  
第16行: 第13行:  
  | url    = https://books.google.com/books?id=nauWlPTBcjIC&q=bistable+bistability&pg=PA267
 
  | url    = https://books.google.com/books?id=nauWlPTBcjIC&q=bistable+bistability&pg=PA267
 
  | isbn  = 978-0122004001
 
  | isbn  = 978-0122004001
  }}</ref>。电灯的开关是一种常见的机械双稳态系统,其中的杠杆设计使开关停留在“开”或“关”的位置,而不是中间位置。机械系统、电子系统、非线性光学系统、化学系统和生物系统都可能具有双稳态。
+
  }}</ref>。电灯的开关是一种常见的双稳性机械系统,其中的杠杆设计使开关停留在“开”或“关”的位置,而不是中间位置。机械系统、电子系统、非线性光学系统、化学系统和生物系统都可能具有双稳性。
   −
In a [[conservative force]] field, bistability stems from the fact that the [[potential energy]] has two [[local minimum|local minima]], which are the stable equilibrium points.<ref name="Nazarov">{{cite book
+
 
 +
在保守力场系统中,若势能有两个局部极小值点,则系统具有双稳性<ref name="Nazarov">{{cite book
 
  | last1  = Nazarov
 
  | last1  = Nazarov
 
  | first1 = Yuli V.
 
  | first1 = Yuli V.
第29行: 第27行:  
  | url    = https://books.google.com/books?id=w20gAwAAQBAJ&q=bistability+minimum&pg=PA291
 
  | url    = https://books.google.com/books?id=w20gAwAAQBAJ&q=bistability+minimum&pg=PA291
 
  | isbn  = 978-1139619028
 
  | isbn  = 978-1139619028
  }}</ref> These rest states need not have equal potential energy.  By mathematical arguments, a [[local maximum]], an unstable equilibrium point, must lie between the two minima.  At rest, a particle will be in one of the minimum equilibrium positions, because that corresponds to the state of lowest energy. The maximum can be visualized as a barrier between them.
+
  }}</ref>。由于势能函数具有连续性,该系统一定存在不稳定的势能极大值点。在静息状态下,粒子将处于某一势能极小值点,极大值点可以视为它们之间的一道屏障。若给予足够的活化能,粒子能够穿过极大值屏障,从一个稳定区域到达另一个稳定区域,并在一段时间之后静止在极小值点上(假定该系统是[[耗散系统]]),这段时间称为'''<font color="#ff8000"> 驰豫时间relaxation time</font>'''
 
  −
In a conservative force field, bistability stems from the fact that the potential energy has two local minima, which are the stable equilibrium points. These rest states need not have equal potential energy.  By mathematical arguments, a local maximum, an unstable equilibrium point, must lie between the two minima.  At rest, a particle will be in one of the minimum equilibrium positions, because that corresponds to the state of lowest energy. The maximum can be visualized as a barrier between them.
  −
 
  −
在保守力场中,双稳态是由势能存在两个局部极小点,这两个局部极小点是稳定的平衡点。这些静止态不一定有相等的势能。通过数学论证,一个局部极大值,一个不稳定的平衡点,一定位于两个极小值之间。在静止状态下,一个粒子将处于最小平衡位置之一,因为那对应于最低能量的状态。最大值可以视为它们之间的一道屏障。
  −
 
  −
A system can transition from one state of minimal energy to the other if it is given enough activation energy to penetrate the barrier (compare [[activation energy]] and [[Arrhenius equation]] for the chemical case). After the barrier has been reached, the system will relax into the other minimum state in a time called the [[relaxation time]].
  −
 
  −
A system can transition from one state of minimal energy to the other if it is given enough activation energy to penetrate the barrier (compare activation energy and Arrhenius equation for the chemical case). After the barrier has been reached, the system will relax into the other minimum state in a time called the relaxation time.
     −
一个系统可以从一个最小能量的状态过渡到另一个状态,如果它被给予足够的活化能穿透阻挡层(比较活化能和阿伦尼乌斯方程的化学情况)。达到屏障后,系统将在一个时间内放松到另一个最小状态,称为放松时间。
      
Bistability is widely used in [[digital electronics]] devices to store [[binary number|binary]] data. It is the essential characteristic of the [[flip-flop (electronics)|flip-flop]], a circuit which is a fundamental building block of [[computer]]s and some types of [[semiconductor memory]].  A bistable device can store one [[binary digit|bit]] of binary data, with one state representing a "0" and the other state a "1".  It is also used in [[relaxation oscillator]]s, [[multivibrator]]s, and the [[Schmitt trigger]].
 
Bistability is widely used in [[digital electronics]] devices to store [[binary number|binary]] data. It is the essential characteristic of the [[flip-flop (electronics)|flip-flop]], a circuit which is a fundamental building block of [[computer]]s and some types of [[semiconductor memory]].  A bistable device can store one [[binary digit|bit]] of binary data, with one state representing a "0" and the other state a "1".  It is also used in [[relaxation oscillator]]s, [[multivibrator]]s, and the [[Schmitt trigger]].
45

个编辑