更改

删除852字节 、 2020年4月13日 (一) 02:06
第288行: 第288行:       −
As a consequence of the definition of the Mandelbrot set, there is a close correspondence between the geometry of the Mandelbrot set at a given point and the structure of the corresponding Julia set. For instance, a point is in the Mandelbrot set exactly when the corresponding Julia set is connected.
   
由曼德布洛特集的定义,在给定点处曼德布洛特集的几何结构与相应的朱利亚集的几何结构有着密切的对应关系。 例如,当一个点在曼德布洛特集聚集时,相应的朱利亚集是连通的。
 
由曼德布洛特集的定义,在给定点处曼德布洛特集的几何结构与相应的朱利亚集的几何结构有着密切的对应关系。 例如,当一个点在曼德布洛特集聚集时,相应的朱利亚集是连通的。
      −
This principle is exploited in virtually all deep results on the Mandelbrot set. For example, Shishikura proved that, for a dense set of parameters in the boundary of the Mandelbrot set, the Julia set has Hausdorff dimension two, and then transfers this information to the parameter plane.[21] Similarly, Yoccoz first proved the local connectivity of Julia sets, before establishing it for the Mandelbrot set at the corresponding parameters.[18] Adrien Douady phrases this principle as:
  −
Plough in the dynamical plane, and harvest in parameter space.
   
事实上,该原理被运用到曼德布洛特集的所有深层结果中。 例如,Shishikura 证明了对于在曼德布洛特集分界线上的一组稠密的参数,相对应的'''朱利亚集  Julia set'''的豪斯多夫维数为2,然后将这些信息传递到参数平面上。 [21]同样,Yoccoz 首先证明了朱利亚集的局部连通性,然后在相应的参数点处进一步证明曼德布洛特集的局部连通性。 [18]Adrien Douady将这一原则表述为:在动力平面上耕耘,在参数空间中收获。
 
事实上,该原理被运用到曼德布洛特集的所有深层结果中。 例如,Shishikura 证明了对于在曼德布洛特集分界线上的一组稠密的参数,相对应的'''朱利亚集  Julia set'''的豪斯多夫维数为2,然后将这些信息传递到参数平面上。 [21]同样,Yoccoz 首先证明了朱利亚集的局部连通性,然后在相应的参数点处进一步证明曼德布洛特集的局部连通性。 [18]Adrien Douady将这一原则表述为:在动力平面上耕耘,在参数空间中收获。
  
7,129

个编辑