更改

删除51字节 、 2022年5月2日 (一) 14:25
第109行: 第109行:       −
Caravelli-Traversa-Di Ventra方程是描述物理记忆网络和外部源性质的函数。在上述方程中,<math>\alpha</math>是“遗忘”时间尺度常数,<math>\xi=r-1</math>,<math>r =\frac{R\text_{off}}{R_\text{on}}</math>是记忆电阻器off状态和on状态极限电阻值之比,<math>\vec S</math>是电路源的矢量,<math>\Omega</math>是电路基本环路的投影。常数<math>\beta</math>具有电压的量纲,与记忆电阻器的特性有关;其物理原型是导体中的电荷迁移率。对角矩阵和向量 <math>W=\operatorname{diag}(\vec W)</math>和<math>\vec W</math> '''<font color="#32CD32">分别是忆阻器的内阻''',值在0到1之间。因此,这个等式需要在'''<font color="32CD32">内存值'''上添加额外约束以保证可靠性。
+
Caravelli-Traversa-Di Ventra方程是描述物理记忆网络和外部源性质的函数。在上述方程中,<math>\alpha</math>是“遗忘”时间尺度常数,<math>\xi=r-1</math>,<math>r =\frac{R\text_{off}}{R_\text{on}}</math>是记忆电阻器off状态和on状态极限电阻值之比,<math>\vec S</math>是电路源的矢量,<math>\Omega</math>是电路基本环路的投影。常数<math>\beta</math>具有电压的量纲,与记忆电阻器的特性有关;其物理原型是导体中的电荷迁移率。对角矩阵和向量 <math>W=\operatorname{diag}(\vec W)</math>和<math>\vec W</math> '''分别是忆阻器的内阻,值在0到1之间。因此,这个等式需要在内存值=上添加额外约束以保证可靠性。
    
<br>
 
<br>
7,129

个编辑