更改

无编辑摘要
第10行: 第10行:     
其中<math>Y(0)</math>和<math>Y(1)</math>是两个潜在结果,W是处理分配,X是协变量<ref>Rubin, Donald B.; Rosenbaum, Paul R. (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects"</ref>。类似地,还有弱可忽略分配机制,只需:<math>Y(w)\perp W|X</math>
 
其中<math>Y(0)</math>和<math>Y(1)</math>是两个潜在结果,W是处理分配,X是协变量<ref>Rubin, Donald B.; Rosenbaum, Paul R. (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects"</ref>。类似地,还有弱可忽略分配机制,只需:<math>Y(w)\perp W|X</math>
 +
    
对<math>w=0和1</math>成立。可忽略性也是缺失数据分析中的常见假设。
 
对<math>w=0和1</math>成立。可忽略性也是缺失数据分析中的常见假设。
 +
    
定义倾向性得分<math>e(x)=P(W=1|X=x)</math>,用以表示个体被分配到处理组的概率,可以证明,当无混淆性成立时,<math>(Y(0),Y(1))\perp W|e(X)</math>因此只需要控制一个一维变量,就能实现潜在结果与处理分配相互独立。
 
定义倾向性得分<math>e(x)=P(W=1|X=x)</math>,用以表示个体被分配到处理组的概率,可以证明,当无混淆性成立时,<math>(Y(0),Y(1))\perp W|e(X)</math>因此只需要控制一个一维变量,就能实现潜在结果与处理分配相互独立。
第25行: 第27行:     
由于无混淆性涉及潜在结果,因此不可检验。Donald Rubin提出了几种间接验证无混淆性的方法,包括伪结局、伪处理方法,以及基于子集可忽略性的方法<ref>Imbens & Rubin 2015书</ref>。Rosenbaum针对无混淆性提出了敏感性分析<ref>Rosembaum,Design of Observational Studies书</ref>。
 
由于无混淆性涉及潜在结果,因此不可检验。Donald Rubin提出了几种间接验证无混淆性的方法,包括伪结局、伪处理方法,以及基于子集可忽略性的方法<ref>Imbens & Rubin 2015书</ref>。Rosenbaum针对无混淆性提出了敏感性分析<ref>Rosembaum,Design of Observational Studies书</ref>。
       
7,129

个编辑