更改

添加11字节 、 2022年6月8日 (三) 01:29
审校
第4行: 第4行:  
潜在结果最初的提出是在Neyman的论文[1]中,但是这篇文章只在随机对照试验中使用了潜在结果的概念,且直到1990年翻译成英文后才为人所知。Rubin在他1974年的论文中也提出了潜在结果的概念,并将这个概念推广到了观察性数据中[2],真正开启了统计学界对因果推断的广泛研究。
 
潜在结果最初的提出是在Neyman的论文[1]中,但是这篇文章只在随机对照试验中使用了潜在结果的概念,且直到1990年翻译成英文后才为人所知。Rubin在他1974年的论文中也提出了潜在结果的概念,并将这个概念推广到了观察性数据中[2],真正开启了统计学界对因果推断的广泛研究。
   −
何为潜在结果?又如何基于潜在结果定义因果?假设我们关心某个变量A(例如,在某个时间点是否服用阿莫西林,A=1是服用,A=0是没有服用)对Y(服用后三小时的是否还感冒,Y=1表示感冒,Y=0表示没有感冒)的因果关系。那么我们观察到的某个个体就存在两个“潜在”的状态:一个是如果他服药,他三小时后是否感冒,不妨记作Y(1);另一个如果他没有服药,他三小时后是否感冒,不妨记作Y(0)。这里Y(1)和Y(0)就是潜在结果。(注意,在实际中,Y(1)和Y(0)这二者中只有一个可以被观察到。另外,严格地说,此处实际上做了“个体处理值稳定”即SUTVA的假设)那么对这个人,就可能有以下四种情况:
+
何为潜在结果?又如何基于潜在结果定义因果?假设我们关心某个变量A(例如,在某个时间点是否服用阿莫西林,A=1是服用,A=0是没有服用)对Y(服用后三小时的是否还感冒,Y=1表示感冒,Y=0表示没有感冒)的因果关系。那么我们观察到的某个个体就存在两个“潜在”的状态:一个是如果他服药,他三小时后是否感冒,不妨记作Y(1);另一个如果他没有服药,他三小时后是否感冒,不妨记作Y(0)。这里Y(1)和Y(0)就是潜在结果。(注意,在实际中,Y(1)和Y(0)这二者中只有一个可以被观察到。另外,严格地说,此处实际上做了“个体处理性稳定性”即SUTVA的假设)那么对这个人,就可能有以下四种情况:
    
a) Y(0)=0, Y(1)=0。即不论吃不吃药,这个人在三小时后均不会感冒。
 
a) Y(0)=0, Y(1)=0。即不论吃不吃药,这个人在三小时后均不会感冒。
第42行: 第42行:  
|−5
 
|−5
 
|}
 
|}
Yt(u) 表示如果乔服用了这种新药物之后对应的血压。一般来说,这个符号表示一个单位 u 上的治疗结果 t 的潜在结果。类似地,Yc (u)是一个单位 u 上的不同治疗效果 c 的潜在结果或控制组的结果。Yc (u)若表示控制组,则在这种情况下,Yt (u)-Yc (u)就是表示乔不吃这种新药物时的血压,也就是服用这种新药物的因果效应。
+
Yt(u) 表示如果Joe服用了这种新药物之后对应的血压。一般来说,这个符号表示在个体 u 上的实施治疗 t 的潜在结果。类似地,Yc (u)是在个体 u 上的不做治疗(控制 )c 的潜在结果,即Yc (u)表示Joe不吃这种新药物时对应的血压。则在这种情况下,Yt (u)-Yc (u)也就是服用这种新药物对Joe的血压的因果效应。
   −
从这个表格中我们只知道对乔的因果效应。研究中的其他人如果服用新药,血压可能会升高。然而,不管其他受试者的因果效应如何,我们可以得出结论,对于乔来说,相比于他没有服用新药的情况,服用该药,他的血压会降低。
+
从这个表格中我们只知道对Joe的因果效应。研究中的其他人如果服用新药,血压可能会升高。然而,不管其他受试者的因果效应如何,我们可以得出结论,对于Joe来说,相比于他没有服用新药的情况,服用该药,他的血压会降低。
   −
考虑更为大量的病患样本
+
考虑更多的病患样本
 
{| class="wikitable"
 
{| class="wikitable"
 
!subject
 
!subject
第73行: 第73行:  
|−15
 
|−15
 
|}
 
|}
每个实验对象的因果效应是不同的,从该表中,可知效应为负值,说明药物仅对乔,玛丽和鲍勃起作用。他们服用这种药物后的血压比没有服用这种药物时的血压要低。另一方面,对于 Sally 来说,这种药物会导致血压升高。
+
每个实验对象的因果效应是不同的。从该表中可知Joe,Mary和Bob的因果效应为负值,说明药物仅对Joe,Mary和Bob起作用。他们服用这种药物后的血压比没有服用这种药物时的血压要低。另一方面,对于Sally 来说,这种药物会导致血压升高。
   −
为了让一个潜在的结果有意义,它必须是可能的,至少是先验的。例如,如果乔在任何情况下都没有办法获得新药,那么他就不可能获得效应。这永远不可能发生在乔身上。如果不能观察到效应,即使在理论上,那么治疗对乔的血压的因果效应也不能确定。
+
为了让一个潜在的结果有意义,它必须是可测试的,至少是先验的。例如,如果Joe在任何情况下都没有办法获得新药,那么他就不可能获得效应。这永远不可能发生在Joe身上。如果不能观察到效应,即使在理论上,那么治疗对Joe的血压的因果效应也不能确定。
   −
== 没有操纵就没有因果关系 ==
+
== 没有干预就没有因果关系 ==
 
新药的因果效应是明确定义的,因为它是两种可能发生的潜在结果的简单差异。在这种情况下,我们(或其他事物)可以干预世界,至少在概念上是这样,因此可能会发生不同的事。
 
新药的因果效应是明确定义的,因为它是两种可能发生的潜在结果的简单差异。在这种情况下,我们(或其他事物)可以干预世界,至少在概念上是这样,因此可能会发生不同的事。
   −
如果永远不可能发生其中一种潜在结果,那么这种因果效应的定义就会变得更加棘手。例如,乔的身高对他的体重有什么因果关系?这似乎与我们的其他示例相似。我们只需要比较两个潜在的结果:Joe 在处理下的体重(处理被定义为高3英寸)和 Joe 在控制下的体重(控制被定义为他当前的身高)。
+
如果永远不可能发生其中一种潜在结果,那么这种因果效应的定义就会变得更加棘手。例如,Joe的身高对他的体重有什么因果关系?这似乎与我们的其他示例相似。我们只需要比较两个潜在的结果:Joe 在处理下的体重(处理被定义为增高3英寸)和 Joe 在控制下的体重(控制被定义为他当前的身高)。
   −
问题在于:我们无法增加乔的身高。没有办法观察如果乔更高,他的体重会是多少,因为没有办法让他更高。我们无法操纵乔的身高,因此调查身高对体重的因果关系毫无意义。因此有一个口号:没有操纵就没有因果关系。
+
问题在于:我们无法增加Joe的身高。没有办法观察如果Joe更高,他的体重会是多少,因为我们没有办法干预Joe的身高从而让他变得更高,这就让研究Joe的身高和体重的因果关系变得没有意义。因此有一个口号:没有干预就没有因果关系。
   −
== 稳定单元处理值假设 (SUTVA) ==
+
== 个体处理稳定性假设 (SUTVA) ==
我们要求“对一个单元的 [潜在结果] 观察不应受到其他单元的特定处理分配的影响”(Cox 1958,第 2.4 节)。这被称为稳定单元处理值假设(SUTVA),它超越了独立性的概念。
+
我们要求“对一个个体的 [潜在结果] 观察不应受到其他个体的特定处理分配的影响”(Cox 1958,第 2.4 节)。这被称为个体处理稳定性假设(SUTVA),它超越了独立性的概念。
   −
在我们的例子中,Joe 的血压不应该取决于 Mary 是否接受了药物。但如果真的发生了呢?假设乔和玛丽住在同一所房子里,玛丽总是做饭。这种药物会导致玛丽渴望咸的食物,所以如果她服用这种药物,她会用比其他情况下更多的盐来烹饪。高盐饮食会增加乔的血压。因此,他的结果将取决于他接受的处理和玛丽接受的处理。
+
在我们的例子中,Joe 的血压不应该取决于 Mary 是否接受了药物。但如果真的发生了呢?假设Joe和Mary住在同一所房子里,Mary总是做饭。这种药物会导致Mary渴望咸的食物,所以如果她服用这种药物,她会用比其他情况下更多的盐来烹饪。高盐饮食会增加Joe的血压。因此,Joe的血压结果将同时取决于他接受的处理和Mary接受的处理。
    
在不满足SUTVA的情况下,因果推断会更加困难。我们可以通过考虑更多的处理来解释相关的观察结果。我们通过考虑 Mary 是否接受处理来创建 4 个处理。
 
在不满足SUTVA的情况下,因果推断会更加困难。我们可以通过考虑更多的处理来解释相关的观察结果。我们通过考虑 Mary 是否接受处理来创建 4 个处理。
第95行: 第95行:  
!乔||140||130||125||120
 
!乔||140||130||125||120
 
|}
 
|}
回想一下,因果效应被定义为两个潜在结果之间的差异。在这种情况下,存在多种因果效应,因为存在两个以上的潜在结果。一是玛丽接受处理时药物对乔的因果效应【130-140】。另一个是当玛丽没有接受处理时对乔的因果效应【120-125】。第三是在乔没有得到处理的情况下,玛丽的处理对乔的因果效应【125-140】。Mary 接受的处理对 Joe 的因果影响比 Joe 接受的处理对 Joe 的影响更大,而且是相反的方向。
+
回想一下,因果效应被定义为两个潜在结果之间的差异。在这种情况下,存在多种因果效应,因为存在两个以上的潜在结果。一是Mary接受处理时药物对Joe的因果效应【130-140】。另一个是当Mary没有接受处理时对Joe的因果效应【120-125】。第三是在Joe没有得到处理的情况下,Mary的处理对Joe的因果效应【125-140】。Mary 接受的处理对 Joe 的因果影响比 Joe 接受的处理对 Joe 的影响更大,而且是相反的方向。
   −
通过以这种方式考虑更多潜在结果,我们可以使SUTVA成立。但是,如果 Joe 以外的任何单位都依赖于 Mary,那么我们必须考虑进一步的潜在结果。依赖单位的数量越多,我们必须考虑的潜在结果就越多,计算也变得越复杂(考虑对不同的20个人进行的实验,每个人的处理状态都会影响其他人的结果)。为了(轻松)估计单一处理相对于对照的因果效应,SUTVA 应该成立。
+
通过以这种方式考虑更多潜在结果,我们可以使SUTVA成立。但是,如果 Joe 以外的任何个体都依赖于 Mary,那么我们必须考虑进一步的潜在结果。依赖个体的数量越多,我们必须考虑的潜在结果就越多,计算也变得越复杂(考虑对不同的20个人进行的实验,每个人的处理状态都会影响其他人的结果)。为了(轻松)估计单一处理相对于对照的因果效应,SUTVA 应该成立。
    
== 分配机制 ==
 
== 分配机制 ==
66

个编辑