更改

添加425字节 、 2022年6月13日 (一) 02:15
第227行: 第227行:     
==== a) 条纹、斑点、气泡——多重反馈的涌现 ====
 
==== a) 条纹、斑点、气泡——多重反馈的涌现 ====
真实的金融或股票市场,以及自然界中许多斑图的生成过程,既不显示出纯粹的第IIa型,也非IIb型行为,而是往往基于二者结合。其实短程激活(short-range activation,正反馈),加上长程抑制(long-range inhibition,负反馈),可以导致许多模式形成的想法并不新鲜。在化学反应的背景下,阿兰·图灵(Alan Turing)早在1952年就发表了一个类似的想法[33]。今天,具有短程正反馈和长程负反馈的系统被称为「激活-抑制剂」(activator-inhibitor)系统,属于「反应-扩散系统」(Reaction-diffusion)的一种。
+
[[文件:图15:斑马的斑图.png|左|缩略图|图15:斑马的斑纹]]
 
+
真实的金融或股票市场,以及自然界中许多斑图的生成过程,既不显示出纯粹的第IIa型,也非IIb型行为,而是往往基于二者结合。其实短程激活(short-range activation,正反馈)与长程抑制(long-range inhibition,负反馈)相结合,进而形成斑图的想法并不新鲜。在化学反应的背景下,阿兰·图灵(Alan Turing)早在1952年就阐述过类似的想法[33]。今天,具有短程正反馈和长程负反馈的系统被称为「激活-抑制剂」(activator-inhibitor)系统,属于「反应-扩散系统」(Reaction-diffusion)的一种。
(图15:斑马的斑图)
      
在反应-扩散系统中,激活剂「自动」催化其自身的生产,同时激活抑制剂,但后者扩散得速度更快。对短程而言,正反馈占上风,对于长程距离,负反馈占上风。这类系统能导致许多类型的生物斑图的生成[34]。
 
在反应-扩散系统中,激活剂「自动」催化其自身的生产,同时激活抑制剂,但后者扩散得速度更快。对短程而言,正反馈占上风,对于长程距离,负反馈占上风。这类系统能导致许多类型的生物斑图的生成[34]。
 
+
[[文件:图16:反应-扩散系统模拟斑马的斑图.png|缩略图|图16:反应-扩散系统模拟斑马斑纹]]
(图16:反应-扩散系统模拟斑马的斑图)
  −
 
   
这个过程也可以用简单的元胞自动机来模拟。例如,通过规则「算出某方格白色直接近邻的数量,减去其20×20左右方块内白色近邻数量的1/10。如果总和大于1,则该单元格变成白色,否则变成黑色」[35]。他们的进化游戏只包括两种玩家:那些总是合作的玩家和那些总是叛变的玩家。每个格子的位置都由一个玩家占据。在每一轮中,玩家与他们的近邻进行囚徒困境游戏,玩家的分数是这些遭遇中的报酬之和。在这一轮(或一代)结束时,每个格子的位置由前一个主人和邻居中得分最高的玩家占据。其结果是,「叛逃者」和「作弊者」(红色)的网络在合作者(蓝色)的海洋中出现了。合作者相互支持和加强,但如果合作者的集群增长过大,叛逃者的条件就会越来越好:利用合作者的红色作弊者扩散并限制蓝色集群的规模。
 
这个过程也可以用简单的元胞自动机来模拟。例如,通过规则「算出某方格白色直接近邻的数量,减去其20×20左右方块内白色近邻数量的1/10。如果总和大于1,则该单元格变成白色,否则变成黑色」[35]。他们的进化游戏只包括两种玩家:那些总是合作的玩家和那些总是叛变的玩家。每个格子的位置都由一个玩家占据。在每一轮中,玩家与他们的近邻进行囚徒困境游戏,玩家的分数是这些遭遇中的报酬之和。在这一轮(或一代)结束时,每个格子的位置由前一个主人和邻居中得分最高的玩家占据。其结果是,「叛逃者」和「作弊者」(红色)的网络在合作者(蓝色)的海洋中出现了。合作者相互支持和加强,但如果合作者的集群增长过大,叛逃者的条件就会越来越好:利用合作者的红色作弊者扩散并限制蓝色集群的规模。
 
+
[[文件:图17:元胞自动机模拟斑马的斑图.png|左|缩略图|图17:元胞自动机模拟斑马斑纹]]
(图17:元胞自动机模拟斑马的斑图)
  −
 
   
真实的金融或股票市场往往表现出混乱和不可预测的行为,产生分形和多重分形结构,有运转着不可预测的连续损失和崩溃,但也有各种规模的重复投机泡沫,例如,见[36]。像股票市场这样既有正反馈机制又有负反馈机制的系统可以表现出振荡和混乱的行为。
 
真实的金融或股票市场往往表现出混乱和不可预测的行为,产生分形和多重分形结构,有运转着不可预测的连续损失和崩溃,但也有各种规模的重复投机泡沫,例如,见[36]。像股票市场这样既有正反馈机制又有负反馈机制的系统可以表现出振荡和混乱的行为。
    
我们经常能发现短期正反馈(盲目模仿)和长期负反馈(仔细考虑)的结合。当股票上涨时,相信进一步上涨是可能的,于是给投资者、模仿者和趋势追随者带来了购买的动力,这将使价格上涨得更多(正反馈);但当股票价格终于上涨,人们知道最终一定会有一个高峰后,市场预期就会下跌、价格会下降,最终阻止了买家购入(负反馈)。股票下跌的过程也类似。一旦市场开始有规律地下跌,一些投资者可能会预期会进一步下跌而不去购买(正反馈),但其他人可能会购买,因为股票变得越来越便宜了(负反馈)。短期正反馈和长期负反馈的结合导致了「泡沫化」,波动或动荡的泡沫序列。各种大小短期泡沫的出现,升起和扩大,就像它们再次消失一样迅速。一个气泡触发自某种波动或不规则,它通过正反馈扩大,通过负反馈再次缩小。这种起泡行为的一个很好的模型是元胞自动机的「更大生命」(Larger than Life),它是康威生命游戏的更大半径的扩展版。康威的生命游戏定义很简单:如果 x 的领域人口数等于3,则在格点处发生「出生」。即如果计数在 [2…3] 中,则点 x 保持占用/活着状态。「更大生命」中的「虫子」(Bugs)规则非常类似:如果其邻域内的人口(包括或不包括 x)位于区间 [34.…45](正反馈),则在 x 处出生;如果计数在 [34…58] 中,点 x 保持被占用(由于孤独和人口过多,极小和极大值的负反馈)。下面显示了使用来自 Mirek Wójtowicz 的 CA 模拟器 MJCell 制作的一系列气泡截屏:
 
我们经常能发现短期正反馈(盲目模仿)和长期负反馈(仔细考虑)的结合。当股票上涨时,相信进一步上涨是可能的,于是给投资者、模仿者和趋势追随者带来了购买的动力,这将使价格上涨得更多(正反馈);但当股票价格终于上涨,人们知道最终一定会有一个高峰后,市场预期就会下跌、价格会下降,最终阻止了买家购入(负反馈)。股票下跌的过程也类似。一旦市场开始有规律地下跌,一些投资者可能会预期会进一步下跌而不去购买(正反馈),但其他人可能会购买,因为股票变得越来越便宜了(负反馈)。短期正反馈和长期负反馈的结合导致了「泡沫化」,波动或动荡的泡沫序列。各种大小短期泡沫的出现,升起和扩大,就像它们再次消失一样迅速。一个气泡触发自某种波动或不规则,它通过正反馈扩大,通过负反馈再次缩小。这种起泡行为的一个很好的模型是元胞自动机的「更大生命」(Larger than Life),它是康威生命游戏的更大半径的扩展版。康威的生命游戏定义很简单:如果 x 的领域人口数等于3,则在格点处发生「出生」。即如果计数在 [2…3] 中,则点 x 保持占用/活着状态。「更大生命」中的「虫子」(Bugs)规则非常类似:如果其邻域内的人口(包括或不包括 x)位于区间 [34.…45](正反馈),则在 x 处出生;如果计数在 [34…58] 中,点 x 保持被占用(由于孤独和人口过多,极小和极大值的负反馈)。下面显示了使用来自 Mirek Wójtowicz 的 CA 模拟器 MJCell 制作的一系列气泡截屏:
 
+
[[文件:图18:基于元胞自动机「更大生命」游戏.png|居中|有框|图18:基于元胞自动机「更大生命」游戏]]
(图18:基于元胞自动机「更大生命」游戏)
  −
 
   
IIIa类也包含了通常「生命游戏」的所有模式:信号灯(Blinkers)、滑翔机(Gliders)、飞船(Spaceships)等。在约翰·康威(John Conway)通常的「生命游戏」中,除了普通的滑翔机——最基本的「宇宙飞船」外,还有各种不同大小的宇宙飞船,有轻量级、中量级和重量级。宇宙飞船以光速移动,例如每个时间步长走一个像素或单位。
 
IIIa类也包含了通常「生命游戏」的所有模式:信号灯(Blinkers)、滑翔机(Gliders)、飞船(Spaceships)等。在约翰·康威(John Conway)通常的「生命游戏」中,除了普通的滑翔机——最基本的「宇宙飞船」外,还有各种不同大小的宇宙飞船,有轻量级、中量级和重量级。宇宙飞船以光速移动,例如每个时间步长走一个像素或单位。
 
+
[[文件:图19:生命游戏中更大规模飞船.png|居中|图19:生命游戏中更大规模的飞船]]
 
(图19:生命游戏中的更大规模的飞船)
 
(图19:生命游戏中的更大规模的飞船)
    
这些飞船看起来都很相似,由共轭的正负反馈反复收缩和扩张(除了在对角线方向上行驶的滑翔机),它们通过相同的机制进行垂直或水平方向传播。这种机制像是在重复地冒泡,飞船的形式可以被看作是一个膨胀和收缩的泡沫的边界。
 
这些飞船看起来都很相似,由共轭的正负反馈反复收缩和扩张(除了在对角线方向上行驶的滑翔机),它们通过相同的机制进行垂直或水平方向传播。这种机制像是在重复地冒泡,飞船的形式可以被看作是一个膨胀和收缩的泡沫的边界。
 
+
[[文件:图20:生命游戏中的飞船传播.png|居中|图20:生命游戏中的飞船传播]]
 
(图20:生命游戏中的飞船传播)
 
(图20:生命游戏中的飞船传播)
    
==== b) 隧穿——具有多重反馈的适应性出现 ====
 
==== b) 隧穿——具有多重反馈的适应性出现 ====
 
复杂性缓慢或突然发生的原因有很多。如果某样东西出现得非常迅速或突然,那么它之前往往被某种障碍或屏障所阻挡了,例如,某种堵塞物、某种教条,一个屏障或一个系统边界。一个大的生态系统由成千上万的物种及其相应的生态位和栖息地组成,其中许多物种相互影响。它通常由许多不同的植物、动物和各种微生物(如细菌)组成,它们被一个非常复杂的网络联系起来。如果我们把像地球这样的全球生态系统作为一个整体来考虑,可以注意到许多类型的反馈和限制,它们共同构成了一个非常复杂的系统。正如我们地球的历史所显示,这样一个系统的演变当然不是一个线性的、平滑的和连续的过程。它的特点是突然的、不稳定的变化和复杂性的跃迁。
 
复杂性缓慢或突然发生的原因有很多。如果某样东西出现得非常迅速或突然,那么它之前往往被某种障碍或屏障所阻挡了,例如,某种堵塞物、某种教条,一个屏障或一个系统边界。一个大的生态系统由成千上万的物种及其相应的生态位和栖息地组成,其中许多物种相互影响。它通常由许多不同的植物、动物和各种微生物(如细菌)组成,它们被一个非常复杂的网络联系起来。如果我们把像地球这样的全球生态系统作为一个整体来考虑,可以注意到许多类型的反馈和限制,它们共同构成了一个非常复杂的系统。正如我们地球的历史所显示,这样一个系统的演变当然不是一个线性的、平滑的和连续的过程。它的特点是突然的、不稳定的变化和复杂性的跃迁。
  −
      
生命形式中不同层次的复杂性和组织与进化转变有关 [37]。进化转变刻画了大适应度鸿沟(fitness gaps)和适应度屏障(fitness barriers)的交叉。突然、不稳定的变化和复杂性的跃迁是不稳定的适应度景观和屏障的结果。进化等待着,直到像大规模灾难这样的重大事件打破并减少这些适应度屏障,或者主体有能力隧道穿它们。如果环境中的灾难挑战突然急剧增加,加速系统向更高形式的复杂性过渡,则灾难将起到催化剂的作用。通过复杂性的借用可以实现适应度屏障的隧穿,类似于量子理论中隧穿过程(tunnelling process)中能量的借用,参见 [38] 的第 5.2 和 5.3 章。
 
生命形式中不同层次的复杂性和组织与进化转变有关 [37]。进化转变刻画了大适应度鸿沟(fitness gaps)和适应度屏障(fitness barriers)的交叉。突然、不稳定的变化和复杂性的跃迁是不稳定的适应度景观和屏障的结果。进化等待着,直到像大规模灾难这样的重大事件打破并减少这些适应度屏障,或者主体有能力隧道穿它们。如果环境中的灾难挑战突然急剧增加,加速系统向更高形式的复杂性过渡,则灾难将起到催化剂的作用。通过复杂性的借用可以实现适应度屏障的隧穿,类似于量子理论中隧穿过程(tunnelling process)中能量的借用,参见 [38] 的第 5.2 和 5.3 章。
  −
      
适应性和进化系统中这种形式的出现与环境中的(大规模)灭绝和戏剧性或灾难性事件直接相关。自然系统中的灾难性事件可以是彗星或小行星撞击、火山、地震、冰期、干旱或洪水。如果存在不可预测、既不太常见也不太罕见的灾难性事件或波动,那么这些灾难可以促进进化和加速适应。因此,这种涌现形式可以称为适应性涌现。它是 IIIb 型涌现的一个例子,出现在具有多重反馈和许多约束生成过程的复杂自适应系统 (CAS) 中。它与全新角色的出现以及已经存在的「生态」生态位的巨大变化有关。
 
适应性和进化系统中这种形式的出现与环境中的(大规模)灭绝和戏剧性或灾难性事件直接相关。自然系统中的灾难性事件可以是彗星或小行星撞击、火山、地震、冰期、干旱或洪水。如果存在不可预测、既不太常见也不太罕见的灾难性事件或波动,那么这些灾难可以促进进化和加速适应。因此,这种涌现形式可以称为适应性涌现。它是 IIIb 型涌现的一个例子,出现在具有多重反馈和许多约束生成过程的复杂自适应系统 (CAS) 中。它与全新角色的出现以及已经存在的「生态」生态位的巨大变化有关。
  −
      
IIIb型涌现也是突发的科学与心智革命的原因。在 「心智革命」之前,通常存在一种对新行动或见解的精神障碍——意义上的不协调感或抑制行动的无意识审查。对人类或主体代理来说,每一个新情况都是一个认知上的难题或问题。如果它不能通过思考和推理得到解决,它就有可能变成一场灾难。因此,每一个心理障碍就像一个小的认知灾难,如果障碍突然被克服,就会产生一个新的见解和雪崩式的神经活动(或大笑)。同样的观点也适用于托马斯·库恩提出的科学革命:会有一种障碍(通常是由旧理论约束造成的)阻止新理论的发现,直到这个障碍被一种新范式所克服,从而导致科学活动和出版物的雪球式发展,见[38]第6.2章。
 
IIIb型涌现也是突发的科学与心智革命的原因。在 「心智革命」之前,通常存在一种对新行动或见解的精神障碍——意义上的不协调感或抑制行动的无意识审查。对人类或主体代理来说,每一个新情况都是一个认知上的难题或问题。如果它不能通过思考和推理得到解决,它就有可能变成一场灾难。因此,每一个心理障碍就像一个小的认知灾难,如果障碍突然被克服,就会产生一个新的见解和雪崩式的神经活动(或大笑)。同样的观点也适用于托马斯·库恩提出的科学革命:会有一种障碍(通常是由旧理论约束造成的)阻止新理论的发现,直到这个障碍被一种新范式所克服,从而导致科学活动和出版物的雪球式发展,见[38]第6.2章。
第272行: 第259行:  
=== 第IV型:强涌现性和随附性 ===
 
=== 第IV型:强涌现性和随附性 ===
 
强涌现可以被定义为在更高层次的组织或复杂性上出现的涌现性结构,这些结构拥有真正的新特性,即使在原则上也不能还原为基本部分和组件的属性和规律的累积效应。例如生命是基因、遗传密码与核酸/氨基酸的强涌现属性,总体而言文化则是模因(memes)、语言和书写系统的强涌现属性。与某些哲学理论相反,这种定义下的强涌现不一定要违反任何物理定律。强涌现一词有时会被用来描述魔法、不科学或超自然的过程,这显然是一个必须加以纠正错误的观念。
 
强涌现可以被定义为在更高层次的组织或复杂性上出现的涌现性结构,这些结构拥有真正的新特性,即使在原则上也不能还原为基本部分和组件的属性和规律的累积效应。例如生命是基因、遗传密码与核酸/氨基酸的强涌现属性,总体而言文化则是模因(memes)、语言和书写系统的强涌现属性。与某些哲学理论相反,这种定义下的强涌现不一定要违反任何物理定律。强涌现一词有时会被用来描述魔法、不科学或超自然的过程,这显然是一个必须加以纠正错误的观念。
  −
      
强涌现所描述的过程不是魔法的、不科学或反科学的,只有多尺度的非常复杂的现象,并没有魔法或超自然的力量参与其中。像其它形式的涌现一样,如果你不了解内在过程,它可能看起来很神奇。如果你从未听说过DNA和基因,那么生命看起来实际上是神奇的。现在有种观念,生命不能仅仅用物理过程来解释(Vitalism,「生命主义」)。物理规律不能描述生物形式,这是正确的,正如粒子物理学的规律与宏观现象无关,与宏观尺度上的集体组织的效果相比,微观规则是不相关的。
 
强涌现所描述的过程不是魔法的、不科学或反科学的,只有多尺度的非常复杂的现象,并没有魔法或超自然的力量参与其中。像其它形式的涌现一样,如果你不了解内在过程,它可能看起来很神奇。如果你从未听说过DNA和基因,那么生命看起来实际上是神奇的。现在有种观念,生命不能仅仅用物理过程来解释(Vitalism,「生命主义」)。物理规律不能描述生物形式,这是正确的,正如粒子物理学的规律与宏观现象无关,与宏观尺度上的集体组织的效果相比,微观规则是不相关的。
  −
      
这就是涌现的悖论,它在强涌现的情况下变得最为明显。宏观的结构和模式依赖于微观的粒子,但它们又独立于微观粒子。这种最弱形式的因果关系被限制称为「随附性」(supervenience)。
 
这就是涌现的悖论,它在强涌现的情况下变得最为明显。宏观的结构和模式依赖于微观的粒子,但它们又独立于微观粒子。这种最弱形式的因果关系被限制称为「随附性」(supervenience)。
    +
宏观层面独立于微观层面的,是因为有一个中观或中间层面来保护和隔离这两者。因此在强涌现中,宏观层面与微观层面无关,反之亦然。这就像安德森(Anderson)说的那样。<blockquote>把一切都归结为简单的基本规律的能力,并不意味着有能力从这些规律开始并重建宇宙。事实上,基本粒子物理学家告诉我们的基本定律的性质越多,它们与科学其他领域的非常现实的问题似乎就越不相关,更不用说与社会的问题了[9]。</blockquote>如果微观层面被其他东西取代,只要中观或中间层面保持不变,宏观层面仍然是不变的。Laughlin 在他的书中[1]第12章将此称为「相关性屏障」(Barrier of Relevance)。
   −
宏观层面独立于微观层面的,是因为有一个中观或中间层面来保护和隔离这两者。因此在强涌现中,宏观层面与微观层面无关,反之亦然。这就像安德森(Anderson)说的那样。<blockquote>把一切都归结为简单的基本规律的能力,并不意味着有能力从这些规律开始并重建宇宙。事实上,基本粒子物理学家告诉我们的基本定律的性质越多,它们与科学其他领域的非常现实的问题似乎就越不相关,更不用说与社会的问题了[9]。</blockquote>如果微观层面被其他东西取代,只要中观或中间层面保持不变,宏观层面仍然是不变的。Laughlin 在他的书中[1]第12章将此称为「相关性屏障」(Barrier of Relevance)。
         
这个意义上的强涌现是对相关性屏障的跨越(crossing of the barrier of relevance)。它通常与巨大的复杂性跃迁和重大演化转变有关,其特点是出现新的复制子(基因、模因……)和全新的演化形式(生物、文化……)。巨大的数量级10^120——根据保罗·戴维斯(Paul Davies)[39]的说法,兰道尔-惠勒-劳埃德极限(Landauer-Wheeler-Lloyd limit)为 「底层」物理学定律可能对「高层」物理状态,行使的任何超决定性的控制设定了约束限制,而这仅仅是一个组合爆炸的问题。巨大的可能组合数量使得任何确定性的算法、规则或定律都不可能突破。
 
这个意义上的强涌现是对相关性屏障的跨越(crossing of the barrier of relevance)。它通常与巨大的复杂性跃迁和重大演化转变有关,其特点是出现新的复制子(基因、模因……)和全新的演化形式(生物、文化……)。巨大的数量级10^120——根据保罗·戴维斯(Paul Davies)[39]的说法,兰道尔-惠勒-劳埃德极限(Landauer-Wheeler-Lloyd limit)为 「底层」物理学定律可能对「高层」物理状态,行使的任何超决定性的控制设定了约束限制,而这仅仅是一个组合爆炸的问题。巨大的可能组合数量使得任何确定性的算法、规则或定律都不可能突破。
 +
       
10^120是一个天文数字,大致相当于宇宙中所有物质已经处理过的信息量。如果把宇宙变成一台计算机,它可以在宇宙年龄内处理大约10^120比特信息,这正好大约是140亿年[40]。
 
10^120是一个天文数字,大致相当于宇宙中所有物质已经处理过的信息量。如果把宇宙变成一台计算机,它可以在宇宙年龄内处理大约10^120比特信息,这正好大约是140亿年[40]。
 +
       
即使一个确定性的规则或规律非常简短并被压缩,如果计算需要几十亿年,也是没有意义的。这并不意味着决定论是完全不可能的,它只是制约了局部的、低层次的规律的决定性,而不是全局的、高层次的行为,具有系统的强涌现性。
 
即使一个确定性的规则或规律非常简短并被压缩,如果计算需要几十亿年,也是没有意义的。这并不意味着决定论是完全不可能的,它只是制约了局部的、低层次的规律的决定性,而不是全局的、高层次的行为,具有系统的强涌现性。
  −
      
肯定达到兰道尔-惠勒-劳埃德极限的例子是进化系统的两种基本形式(遗传和记忆进化)的转变:
 
肯定达到兰道尔-惠勒-劳埃德极限的例子是进化系统的两种基本形式(遗传和记忆进化)的转变:
第317行: 第300行:  
== '''结论''' ==
 
== '''结论''' ==
 
本文针对不同类型的涌现进行了全面的分类,将其划分为四个基本类别。I型描述了没有自上而下反馈和自组织的简单涌现,尤其是复杂机器中的有意涌现。II型包括经典的具有自上而下反馈和自组织的弱涌现。在这一类型中,还进一步区分了稳定和不稳定的形式。III型涵盖了在更复杂的适应性系统中,由于进化通过多重反馈和适应而产生的所有形式的涌现。最后IV型刻画了进化中所有形式的强涌现的特征。由此强涌现这一术语可从任何神奇或不科学的含义中解放出来。(见表2)  
 
本文针对不同类型的涌现进行了全面的分类,将其划分为四个基本类别。I型描述了没有自上而下反馈和自组织的简单涌现,尤其是复杂机器中的有意涌现。II型包括经典的具有自上而下反馈和自组织的弱涌现。在这一类型中,还进一步区分了稳定和不稳定的形式。III型涵盖了在更复杂的适应性系统中,由于进化通过多重反馈和适应而产生的所有形式的涌现。最后IV型刻画了进化中所有形式的强涌现的特征。由此强涌现这一术语可从任何神奇或不科学的含义中解放出来。(见表2)  
  −
      
如果选择可预测性而非反馈作为主要的分类特征,那么以上类别可保持不变——无论考虑可预测性程度、反馈类型、因果关系形式,抑或受不同种类约束的生成过程或作用,都无关紧要。这种分类若用可预测性来具体说明则是:I型的有意涌现是可预测的,与固定的角色相对应;II型的弱涌现在原则上是可预测的(尽管并非每个细节),与灵活的角色相对应;III型的多重涌现往往是混沌或完全不可预测的,与新角色的出现和旧角色的消失有关;而IV型的强涌现则在原则上是不可预测的,因为它开启了一个具有全新角色的全新世界。涌现是一个创造性的、偶然的、且往往不可预测的过程:涌现越强,涌现的属性、模式和结构就越不可预测。(见表1)
 
如果选择可预测性而非反馈作为主要的分类特征,那么以上类别可保持不变——无论考虑可预测性程度、反馈类型、因果关系形式,抑或受不同种类约束的生成过程或作用,都无关紧要。这种分类若用可预测性来具体说明则是:I型的有意涌现是可预测的,与固定的角色相对应;II型的弱涌现在原则上是可预测的(尽管并非每个细节),与灵活的角色相对应;III型的多重涌现往往是混沌或完全不可预测的,与新角色的出现和旧角色的消失有关;而IV型的强涌现则在原则上是不可预测的,因为它开启了一个具有全新角色的全新世界。涌现是一个创造性的、偶然的、且往往不可预测的过程:涌现越强,涌现的属性、模式和结构就越不可预测。(见表1)
  −
      
有可能还存在具有其它「多重反馈」形式的第III型涌现,但迄今为止还没有人提及。具有多种形式反馈的系统往往非常复杂,难以理解。具有延时反馈的系统可以显示出诸如混沌的行为。如果你想发现新形式的涌现,这是一个值得关注的点。本文提出的涌现分类法并不是一个全面的理论,而是在正确的方向上迈出的第一步,以便人们更深入、更好地理解复杂系统中的各种现象。就像复杂性难以定义一样,有些东西如果难以描述就是一种复杂性,因此涌现也很难用模型或理论来完全捕捉,因为在涌现过程中,新的实体会出现,它们就受自己的规律支配。
 
有可能还存在具有其它「多重反馈」形式的第III型涌现,但迄今为止还没有人提及。具有多种形式反馈的系统往往非常复杂,难以理解。具有延时反馈的系统可以显示出诸如混沌的行为。如果你想发现新形式的涌现,这是一个值得关注的点。本文提出的涌现分类法并不是一个全面的理论,而是在正确的方向上迈出的第一步,以便人们更深入、更好地理解复杂系统中的各种现象。就像复杂性难以定义一样,有些东西如果难以描述就是一种复杂性,因此涌现也很难用模型或理论来完全捕捉,因为在涌现过程中,新的实体会出现,它们就受自己的规律支配。
596

个编辑