更改

添加311字节 、 2022年6月18日 (六) 20:14
无编辑摘要
第395行: 第395行:  
*{{Bibitem article 2|Recurrent networks with short term synaptic depression.|Journal of Computational Neuroscience.|27(3)|2009|607-620|York|Lawrence Christopher|van Rossum|Mark C. W.|preprint=[http://dx.doi.org/10.1007/s10827-009-0172-4 doi:10.1007/s10827-009-0172-4]|label=York09|doi=10.1007/s10827-009-0172-4}}
 
*{{Bibitem article 2|Recurrent networks with short term synaptic depression.|Journal of Computational Neuroscience.|27(3)|2009|607-620|York|Lawrence Christopher|van Rossum|Mark C. W.|preprint=[http://dx.doi.org/10.1007/s10827-009-0172-4 doi:10.1007/s10827-009-0172-4]|label=York09|doi=10.1007/s10827-009-0172-4}}
 
*{{Bibitem article 2| Short-Term Synaptic Plasticity.|Annual Review of Physiology.|64(1)|2002|355-405|Zucker|Robert S.|Regehr|Wade G.|preprint=[http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547 doi:10.1146/annurev.physiol.64.092501.114547]|label=Zucker02}}
 
*{{Bibitem article 2| Short-Term Synaptic Plasticity.|Annual Review of Physiology.|64(1)|2002|355-405|Zucker|Robert S.|Regehr|Wade G.|preprint=[http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547 doi:10.1146/annurev.physiol.64.092501.114547]|label=Zucker02}}
 
+
<span id="{{{label}}}">{{{6|SURNAME1}}}, {{{7|FORENAME1}}} ({{{4|YEAR}}}{{{letter|}}}).</span> {{{1|TITLE}}} <em>{{{2|JOURNAL}}}</em> {{{3|VOLUMEWITHNUMBER}}}: {{{5|PAGES}}}. {{#if:{{{doi|}}}|[http://dx.doi.org/{{{doi|}}} doi:{{{doi|}}}]. |}}{{{preprint|}}}<noinclude>
 +
{{Bibitem article N doc}}
 +
</noinclude>
    
此词条由神经动力学读书会词条梳理志愿者(Glh20100487)翻译审校,未经专家审核,带来阅读不便,请见谅
 
此词条由神经动力学读书会词条梳理志愿者(Glh20100487)翻译审校,未经专家审核,带来阅读不便,请见谅
第436行: 第438行:  
[hide]  
 
[hide]  
   −
*1 Phenomenological model
+
* 1 Phenomenological model
*2 Effects on information transmission
+
* 2 Effects on information transmission
 
**2.1 Temporal filtering
 
**2.1 Temporal filtering
**2.2 Gain control
+
** 2.2 Gain control
 
*3 Effects on network dynamics
 
*3 Effects on network dynamics
**3.1 Prolongation of neural responses to transient inputs
+
** 3.1 Prolongation of neural responses to transient inputs
 
**3.2 Modulation of network responses to external input
 
**3.2 Modulation of network responses to external input
 
**3.3 Induction of instability or mobility of network state
 
**3.3 Induction of instability or mobility of network state
** 3.4 Enrichment of attractor dynamics
+
**3.4 Enrichment of attractor dynamics
 
*4 Appendix A: Derivation of a temporal filter for short-term depression
 
*4 Appendix A: Derivation of a temporal filter for short-term depression
 
*5 References
 
*5 References
第453行: 第455行:  
*3对网络动态的影响  
 
*3对网络动态的影响  
 
**3.1延长神经对瞬态输入的反应
 
**3.1延长神经对瞬态输入的反应
**3.2网络对外部输入响应的调制
+
** 3.2网络对外部输入响应的调制
 
**3.3网络状态不稳定或迁移的诱导
 
**3.3网络状态不稳定或迁移的诱导
 
**3.4吸引子动力学的富集
 
**3.4吸引子动力学的富集
*4附录A:短期抑郁的时间过滤器的推导
+
* 4附录A:短期抑郁的时间过滤器的推导
 
*5引用
 
*5引用
 
|}
 
|}
第550行: 第552行:  
Since STP has a much longer time scale than that of single neuron dynamics (the latter is typically in the time order of  milliseconds), a new feature STP can bring to the network dynamics is prolongation of neural responses to a transient input. This stimulus-induced residual activity therefore holds a memory trace of the input, lasting up to several hundred milliseconds in a large-size network, and can serve as a buffer for information processing. For example, it has been shown that STD-mediated residual activity can cause a neural system to discriminate between rhythmic inputs of different periods (Karmorkar 07). STP also plays an important role in a general computation framework called a reservoir network. In this framework, STP, together with other dynamical elements of a large-size network, effectively map the input features from a low-dimensional space to the high-dimensional state space of the network that includes both active (neural) and hidden (synaptic) components, so that the input information can be more easily read out (Buonomano 09). In a recent development it was proposed that STF-enhanced synapses themselves can hold the memory trace of an input without recruiting persistent firing of neurons, potentially providing the most economical and robust way to implement working memory (Mongillo 08).
 
Since STP has a much longer time scale than that of single neuron dynamics (the latter is typically in the time order of  milliseconds), a new feature STP can bring to the network dynamics is prolongation of neural responses to a transient input. This stimulus-induced residual activity therefore holds a memory trace of the input, lasting up to several hundred milliseconds in a large-size network, and can serve as a buffer for information processing. For example, it has been shown that STD-mediated residual activity can cause a neural system to discriminate between rhythmic inputs of different periods (Karmorkar 07). STP also plays an important role in a general computation framework called a reservoir network. In this framework, STP, together with other dynamical elements of a large-size network, effectively map the input features from a low-dimensional space to the high-dimensional state space of the network that includes both active (neural) and hidden (synaptic) components, so that the input information can be more easily read out (Buonomano 09). In a recent development it was proposed that STF-enhanced synapses themselves can hold the memory trace of an input without recruiting persistent firing of neurons, potentially providing the most economical and robust way to implement working memory (Mongillo 08).
   −
===Modulation of network responses to external input ===
+
===Modulation of network responses to external input===
 
Since STP modifies synaptic efficacy instantly, it can modulate the network response to sustained external inputs. An example of this is bursty synchronous firing in an STD-dominated network, either spontaneously or in response to external inputs. The resulting bursts of activity are called population spikes (Loebel 02). To understand this effect, consider a network with strong recurrent interactions between neurons. When a sufficiently large group of neurons fire together, e.g. triggered by external stimulus, they can recruit other neurons via an avalanche-like process. However, after a large synchronous burst of activity, the synapses are weakened by STD, reducing the recurrent currents rapidly, and consequently the network activity returns to baseline. The network will not be activated again until the synapses are sufficiently recovered from depression. Therefore, the rate of population spikes is determined by the time constant of STD (Fig.3A,B). STF can also modulate the network response to external inputs, but in a very different manner (Barak 07). The varied response properties mediated by STP may provide different ways of representing and conveying the stimulus information in a network.
 
Since STP modifies synaptic efficacy instantly, it can modulate the network response to sustained external inputs. An example of this is bursty synchronous firing in an STD-dominated network, either spontaneously or in response to external inputs. The resulting bursts of activity are called population spikes (Loebel 02). To understand this effect, consider a network with strong recurrent interactions between neurons. When a sufficiently large group of neurons fire together, e.g. triggered by external stimulus, they can recruit other neurons via an avalanche-like process. However, after a large synchronous burst of activity, the synapses are weakened by STD, reducing the recurrent currents rapidly, and consequently the network activity returns to baseline. The network will not be activated again until the synapses are sufficiently recovered from depression. Therefore, the rate of population spikes is determined by the time constant of STD (Fig.3A,B). STF can also modulate the network response to external inputs, but in a very different manner (Barak 07). The varied response properties mediated by STP may provide different ways of representing and conveying the stimulus information in a network.
   第657行: 第659行:  
*Barak, Omri and Tsodyks, Misha (2007). Persistent Activity in Neural Networks with Dynamic Synapses. ''PLoS Computational Biology.'' 3(2): e35. doi:10.1371/journal.pcbi.0030104.doi:10.1371/journal.pcbi.0030035
 
*Barak, Omri and Tsodyks, Misha (2007). Persistent Activity in Neural Networks with Dynamic Synapses. ''PLoS Computational Biology.'' 3(2): e35. doi:10.1371/journal.pcbi.0030104.doi:10.1371/journal.pcbi.0030035
 
*G. Bi and M. Poo. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24: 139–66, 2001.
 
*G. Bi and M. Poo. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24: 139–66, 2001.
*Bourjaily, M. A. and Miller, P. (2012). Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations. ''Journal of Neurophysiology.'' 108(2): 513-527. doi:10.1152/jn.00806.2011.doi:10.1152/jn.00806.2011
+
* Bourjaily, M. A. and Miller, P. (2012). Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations. ''Journal of Neurophysiology.'' 108(2): 513-527. doi:10.1152/jn.00806.2011.doi:10.1152/jn.00806.2011
 
*P. C. Bressloff. Spatiotemporal Dynamics of Continuum Neural Fields J. Phys. A 45, 033001, 2012.
 
*P. C. Bressloff. Spatiotemporal Dynamics of Continuum Neural Fields J. Phys. A 45, 033001, 2012.
*Buonomano, Dean V. and Maass, Wolfgang (2009). State-dependent computations: spatiotemporal processing in cortical networks. ''Nature Reviews Neuroscience.'' 10(2): 113-125. doi:10.1038/nrn2558.doi:10.1038/nrn2558
+
* Buonomano, Dean V. and Maass, Wolfgang (2009). State-dependent computations: spatiotemporal processing in cortical networks. ''Nature Reviews Neuroscience.'' 10(2): 113-125. doi:10.1038/nrn2558.doi:10.1038/nrn2558
 
*Cook, Daniel L.; Schwindt, Peter C.; Grande, Lucinda A. and Spain, William J. (2003). Synaptic depression in the localization of sound. ''Nature.'' 421(6918): 66-70. doi:10.1038/nature01248.doi:10.1038/nature01248
 
*Cook, Daniel L.; Schwindt, Peter C.; Grande, Lucinda A. and Spain, William J. (2003). Synaptic depression in the localization of sound. ''Nature.'' 421(6918): 66-70. doi:10.1038/nature01248.doi:10.1038/nature01248
 
*J. S. Dittman, A. C. Kreitzer and W. G. Regehr. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20: 1374-1385, 2000.
 
*J. S. Dittman, A. C. Kreitzer and W. G. Regehr. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20: 1374-1385, 2000.
 
*Fortune, Eric S. and Rose, Gary J. (2001). Short-term synaptic plasticity as a temporal filter. ''Trends in Neurosciences.'' 24(7): 381-385. doi:10.1016/s0166-2236(00)01835-x.doi:10.1016/S0166-2236(00)01835-X
 
*Fortune, Eric S. and Rose, Gary J. (2001). Short-term synaptic plasticity as a temporal filter. ''Trends in Neurosciences.'' 24(7): 381-385. doi:10.1016/s0166-2236(00)01835-x.doi:10.1016/S0166-2236(00)01835-X
 
*G. Fuhrmann et al. Coding of Temporal Information by Activity-Dependent Synapses. J. Neurophysiol. 87: 140-148, 2002.
 
*G. Fuhrmann et al. Coding of Temporal Information by Activity-Dependent Synapses. J. Neurophysiol. 87: 140-148, 2002.
* Fung, C. C. Alan; Wong, K. Y. Michael; Wang, He and Wu, Si (2012). Dynamical Synapses Enhance Neural Information Processing: Gracefulness, Accuracy, and Mobility. ''Neural Computation.'' 24(5): 1147-1185. doi:10.1162/neco_a_00269.doi:10.1162/NECO_a_00269
+
*Fung, C. C. Alan; Wong, K. Y. Michael; Wang, He and Wu, Si (2012). Dynamical Synapses Enhance Neural Information Processing: Gracefulness, Accuracy, and Mobility. ''Neural Computation.'' 24(5): 1147-1185. doi:10.1162/neco_a_00269.doi:10.1162/NECO_a_00269
 
*C. C. Fung, K. Y. Michael Wong and S. Wu. Delay Compensation with Dynamical Synapses. Advances in Neural Information Processing Systems 16, 2012.
 
*C. C. Fung, K. Y. Michael Wong and S. Wu. Delay Compensation with Dynamical Synapses. Advances in Neural Information Processing Systems 16, 2012.
 
*C. C. A. Fung, H. Wang, K. Lam, K. Y. M. Wong and S. Wu. Resolution enhancement in neural networks with dynamical synapses. Front. Comput. Neurosci. 7:73. doi: 10.3389/fncom.2013.00073, 2013.
 
*C. C. A. Fung, H. Wang, K. Lam, K. Y. M. Wong and S. Wu. Resolution enhancement in neural networks with dynamical synapses. Front. Comput. Neurosci. 7:73. doi: 10.3389/fncom.2013.00073, 2013.
第676行: 第678行:  
*Klyachko, Vitaly A. and Stevens, Charles F. (2006). Excitatory and Feed-Forward Inhibitory Hippocampal Synapses Work Synergistically as an Adaptive Filter of Natural Spike Trains. ''PLoS Biology.'' 4(7): e207. doi:10.1371/journal.pbio.0040207.doi:10.1371/journal.pbio.0040207
 
*Klyachko, Vitaly A. and Stevens, Charles F. (2006). Excitatory and Feed-Forward Inhibitory Hippocampal Synapses Work Synergistically as an Adaptive Filter of Natural Spike Trains. ''PLoS Biology.'' 4(7): e207. doi:10.1371/journal.pbio.0040207.doi:10.1371/journal.pbio.0040207
 
*A. Loebel and M. Tsodyks. Computation by ensemble synchronization in recurrent networks with synaptic depression. J. Comput. Neurosci. 13: 111-124, 2002.
 
*A. Loebel and M. Tsodyks. Computation by ensemble synchronization in recurrent networks with synaptic depression. J. Comput. Neurosci. 13: 111-124, 2002.
* Markram, H.; Wang, Y. and Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. ''Proceedings of the National Academy of Sciences.'' 95(9): 5323-5328. doi:10.1073/pnas.95.9.5323.doi:10.1073/pnas.95.9.5323
+
*Markram, H.; Wang, Y. and Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. ''Proceedings of the National Academy of Sciences.'' 95(9): 5323-5328. doi:10.1073/pnas.95.9.5323.doi:10.1073/pnas.95.9.5323
 
*Markram, Henry and Tsodyks, Misha (1996). Redistribution of synaptic efficacy between neocortical pyramidal neurons. ''Nature.'' 382(6594): 807-810. doi:10.1038/382807a0.doi:10.1038/382807a0
 
*Markram, Henry and Tsodyks, Misha (1996). Redistribution of synaptic efficacy between neocortical pyramidal neurons. ''Nature.'' 382(6594): 807-810. doi:10.1038/382807a0.doi:10.1038/382807a0
 
*Mejías, Jorge F. and Torres, Joaquín J. (2008). The role of synaptic facilitation in spike coincidence detection. ''Journal of Computational Neuroscience.'' 24(2): 222-234. doi:10.1007/s10827-007-0052-8.doi:10.1007/s10827-007-0052-8
 
*Mejías, Jorge F. and Torres, Joaquín J. (2008). The role of synaptic facilitation in spike coincidence detection. ''Journal of Computational Neuroscience.'' 24(2): 222-234. doi:10.1007/s10827-007-0052-8.doi:10.1007/s10827-007-0052-8
104

个编辑