更改

添加6字节 、 2022年7月23日 (六) 01:51
第24行: 第24行:  
The reasons behind this difference in exponents are still being explored. It is important to note that a power law distribution is not what would be expected if activity at each electrode were driven independently. An ensemble of uncoupled, Poisson-like processes would lead to an exponential distribution of event sizes. Further, while power laws have been reported for many years in neuroscience in the temporal correlations of single time-series data (e.g., the power spectrum from [[Electroencephalogram|EEG]] (Linkenkaer-Hansen et al, 2001; Worrell et al, 2002), [[Fano factor|Fano]] or [[Allan factor]]s in [[Spike Statistics|spike count statistics]] (Teich et al, 1997), [[neurotransmitter]] secretion times (Lowen et al, 1997), [[ion channel]] fluctuations (Toib et al, 1998), interburst intervals in neuronal cultures (Segev et al, 2002)), they had not been observed from interactions seen in multielectrode data. Thus neuronal avalanches emerge from collective processes in a distributed network.
 
The reasons behind this difference in exponents are still being explored. It is important to note that a power law distribution is not what would be expected if activity at each electrode were driven independently. An ensemble of uncoupled, Poisson-like processes would lead to an exponential distribution of event sizes. Further, while power laws have been reported for many years in neuroscience in the temporal correlations of single time-series data (e.g., the power spectrum from [[Electroencephalogram|EEG]] (Linkenkaer-Hansen et al, 2001; Worrell et al, 2002), [[Fano factor|Fano]] or [[Allan factor]]s in [[Spike Statistics|spike count statistics]] (Teich et al, 1997), [[neurotransmitter]] secretion times (Lowen et al, 1997), [[ion channel]] fluctuations (Toib et al, 1998), interburst intervals in neuronal cultures (Segev et al, 2002)), they had not been observed from interactions seen in multielectrode data. Thus neuronal avalanches emerge from collective processes in a distributed network.
   −
其中<math>P(S)</math>是观察到大小为<math>S</math>的雪崩的概率,<math>\alpha</math>是给出对数图中幂律斜率的指数,<math>k</math>是比例常数。对于切片培养实验,[[局部场电位]]雪崩的大小分布的指数<math>\alpha\approx 1.5 </math>,但在不同阵列的尖峰记录中,指数<math>\alpha\approx2.1\。指数差异背后的原因仍在探索中。需要注意的是,如果独立驱动每个电极上的活性,则幂律分布不是预期的分布。非耦合类泊松过程的集合将导致事件大小的指数分布。此外,虽然神经科学多年来在单个时间序列数据的时间相关性中报告了幂律(例如,脑电图的功率谱(Linkenkaer-Hansen等人,2001;Worrell等人,2002),峰计数统计中的Fano或Allan因子(Teich等人,1997),神经递质分泌时间(Lowen等人,1997),离子通道波动(Toib等人,1998),神经元培养中的爆发间期(Segev等人,2002)),从多电极数据中观察到的相互作用中未观察到。因此,神经元雪崩是从分布式网络中的集体过程中产生的。
+
其中<math>P(S)</math>是观察到大小为<math>S</math>的雪崩的概率,<math>\alpha</math>是给出对数图中幂律斜率的指数,<math>k</math>是比例常数。对于切片培养实验,[[局部场电位]]雪崩的大小分布的指数<math>\alpha\approx 1.5 </math>,但在不同阵列的尖峰记录中,指数<math>\alpha\approx2.1</math>。指数差异背后的原因仍在探索中。需要注意的是,如果独立驱动每个电极上的活性,则幂律分布不是预期的分布。非耦合类泊松过程的集合将导致事件大小的指数分布。此外,虽然神经科学多年来在单个时间序列数据的时间相关性中报告了幂律(例如,脑电图的功率谱(Linkenkaer-Hansen等人,2001;Worrell等人,2002),峰计数统计中的Fano或Allan因子(Teich等人,1997),神经递质分泌时间(Lowen等人,1997),离子通道波动(Toib等人,1998),神经元培养中的爆发间期(Segev等人,2002)),从多电极数据中观察到的相互作用中未观察到。因此,神经元雪崩是从分布式网络中的集体过程中产生的。
    
==雪崩的含义 Implications of avalanches==
 
==雪崩的含义 Implications of avalanches==
77

个编辑