更改

删除16字节 、 2022年7月23日 (六) 02:39
第27行: 第27行:     
当一个可调谐系统运行在一个产生幂律分布的系统中时,它被说成是运行在临界点。严格地说,只有无限大的系统才能在临界点上运行,但这里的"临界"一词是用来描述有限系统的行为,如果它们被扩展到无限大,就会接近临界点。幂律雪崩大小分布对这四个领域的神经网络的信息处理有潜在的影响。
 
当一个可调谐系统运行在一个产生幂律分布的系统中时,它被说成是运行在临界点。严格地说,只有无限大的系统才能在临界点上运行,但这里的"临界"一词是用来描述有限系统的行为,如果它们被扩展到无限大,就会接近临界点。幂律雪崩大小分布对这四个领域的神经网络的信息处理有潜在的影响。
* ''信息传输''。当神经网络调整到临界点时,它们具有最佳的信息传输(Beggs和Plenz,2003;Bertschinger和Natschlager,2004;Kinouchi和Copelli,2006),因为在强信号传播和抗饱和之间存在平衡。
+
* 信息传输。当神经网络调整到临界点时,它们具有最佳的信息传输(Beggs和Plenz,2003;Bertschinger和Natschlager,2004;Kinouchi和Copelli,2006),因为在强信号传播和抗饱和之间存在平衡。
* ''信息存储''。当一个基于分支过程的递归网络被调整到临界点时,显著重复的雪崩模式的数量被最大化(Haldeman和Beggs,2005)。在临界点,存在着强连接和弱连接的混合,允许各种独立稳定的活动模式。
+
* 信息存储。当一个基于分支过程的递归网络被调整到临界点时,显著重复的雪崩模式的数量被最大化(Haldeman和Beggs,2005)。在临界点,存在着强连接和弱连接的混合,允许各种独立稳定的活动模式。
* ''计算能力。''通过改变尖峰网络模型中突触重量的变化,Bertschinger和Natschlager(Bertschinger和Natschlager 2004)能够产生显示出衰减、持续和扩张活动的网络。这些区域分别对应于亚临界、临界和超临界动力学。他们发现,在广泛的计算任务中,调谐到临界点的网络比调谐到亚临界或超临界动态的网络更有效。
+
* 计算能力。通过改变尖峰网络模型中突触重量的变化,Bertschinger和Natschlager(Bertschinger和Natschlager 2004)能够产生显示出衰减、持续和扩张活动的网络。这些区域分别对应于亚临界、临界和超临界动力学。他们发现,在广泛的计算任务中,调谐到临界点的网络比调谐到亚临界或超临界动态的网络更有效。
* ''稳定性。''当一个循环分支网络模型被调整到临界点时,它产生的轨迹基本上是平行的,这意味着该网络处于稳定的边缘(Bertschinger和Natschlager,2004;Haldeman和Beggs,2005)。在这种情况下,轨迹仍然是稳定的,但可以通过较小的校正输入进行控制。
+
* 稳定性。当一个循环分支网络模型被调整到临界点时,它产生的轨迹基本上是平行的,这意味着该网络处于稳定的边缘(Bertschinger和Natschlager,2004;Haldeman和Beggs,2005)。在这种情况下,轨迹仍然是稳定的,但可以通过较小的校正输入进行控制。
    
当网络在发生神经雪崩的临界点附近运行时,可以同时优化所有这些信息处理任务。
 
当网络在发生神经雪崩的临界点附近运行时,可以同时优化所有这些信息处理任务。
77

个编辑