更改

添加3字节 、 2022年7月23日 (六) 02:43
撤销Spidey0o0Zheng讨论)的版本33020
第12行: 第12行:     
===幂律尺寸分布===
 
===幂律尺寸分布===
 +
    
这个片段说明,多通道数据可以被分解为没有活动的帧和至少有一个活动电极的帧,这些电极可能接收来自几个神经元的活动。由非活动帧包围的连续活动帧序列可以称为雪崩。所示的雪崩例子的大小为9,因为这是被驱动超过阈值的电极总数。雪崩大小的分布方式几乎符合[[幂律分布]]。由于阵列中的电极数量有限,幂律在阵列大小为60之前就开始向下弯曲切断,但是对于更大的电极阵列,可以看到幂律会延伸得更远。
 
这个片段说明,多通道数据可以被分解为没有活动的帧和至少有一个活动电极的帧,这些电极可能接收来自几个神经元的活动。由非活动帧包围的连续活动帧序列可以称为雪崩。所示的雪崩例子的大小为9,因为这是被驱动超过阈值的电极总数。雪崩大小的分布方式几乎符合[[幂律分布]]。由于阵列中的电极数量有限,幂律在阵列大小为60之前就开始向下弯曲切断,但是对于更大的电极阵列,可以看到幂律会延伸得更远。
 +
 
[[Image:雪崩尺寸分布.jpg|thumb|500px|right|图4:雪崩尺寸分布。
 
[[Image:雪崩尺寸分布.jpg|thumb|500px|right|图4:雪崩尺寸分布。
 
A,用60个电极阵列记录的急性切片[[局部场电位]]的大小分布,以对数空间绘制。实际数据显示为黑色,而泊松模型的输出显示为红色。在泊松模型中,每个电极的发射速度与实际数据中看到的相同,但独立于所有其他电极。注意这两条曲线之间的巨大差异。实际数据在1-35的尺寸下几乎是一条直线;在这一点之后,存在由电极阵列大小引起的截止。直线表示幂律,表明网络在临界点附近运行(未发表的数据由W. Chen, C. Haldeman, S. Wang, A. Tang, J.M. Beggs记录)。
 
A,用60个电极阵列记录的急性切片[[局部场电位]]的大小分布,以对数空间绘制。实际数据显示为黑色,而泊松模型的输出显示为红色。在泊松模型中,每个电极的发射速度与实际数据中看到的相同,但独立于所有其他电极。注意这两条曲线之间的巨大差异。实际数据在1-35的尺寸下几乎是一条直线;在这一点之后,存在由电极阵列大小引起的截止。直线表示幂律,表明网络在临界点附近运行(未发表的数据由W. Chen, C. Haldeman, S. Wang, A. Tang, J.M. Beggs记录)。
 
B,尖峰的雪崩大小分布可以用概率超过三个数量级的直线近似,没有A组中看到的尖锐的截止点。数据是用512个电极阵列从浸泡在高钾和零镁的急性皮层切片中收集的(A. Litke, S. Sher, M. Grivich, D. Petrusca, S. Kachiguine, J. M. Beggs未发表的工作)。峰值以-3个标准差设定阈值,并且未进行分类。数据在1.2ms时合并,以匹配60μm的短电极间距离。从培养基中记录的皮层切片培养中也获得了类似于A和B的结果。]]
 
B,尖峰的雪崩大小分布可以用概率超过三个数量级的直线近似,没有A组中看到的尖锐的截止点。数据是用512个电极阵列从浸泡在高钾和零镁的急性皮层切片中收集的(A. Litke, S. Sher, M. Grivich, D. Petrusca, S. Kachiguine, J. M. Beggs未发表的工作)。峰值以-3个标准差设定阈值,并且未进行分类。数据在1.2ms时合并,以匹配60μm的短电极间距离。从培养基中记录的皮层切片培养中也获得了类似于A和B的结果。]]
 +
    
[[幂律分布]]的公式是:
 
[[幂律分布]]的公式是:
77

个编辑