更改

无编辑摘要
第3行: 第3行:  
The '''Ermentrout-Kopell canonical model''' is better known as the "theta model" and is a simple one-dimensional model for the spiking of a [[neuron]].  It is closely related to the [[quadratic integrate and fire neuron]].  The model takes the following form:
 
The '''Ermentrout-Kopell canonical model''' is better known as the "theta model" and is a simple one-dimensional model for the spiking of a [[neuron]].  It is closely related to the [[quadratic integrate and fire neuron]].  The model takes the following form:
   −
Ermentrout-Kopell规范模型被称为“θ模型”,是一个简单的'''神经元'''尖峰的一维模型。它与'''二次积分和放电神经元'''密切相关。模型的形式如下:
+
'''Ermentrout-Kopell规范模型'''被称为“θ模型”,是一个尖峰'''神经元'''的简单一维模型。它与'''二次积分和放电神经元'''密切相关。模型的形式如下:
    
:<math>\label{theta}
 
:<math>\label{theta}
第13行: 第13行:  
where <math> I(t) </math> are the inputs to the model.  The variable <math> \theta </math> lies on the unit circle and ranges between 0 and <math>2\pi\ .</math>  When <math> \theta=\pi </math> the neuron "spikes", that is, it produces an [[action potential]].   
 
where <math> I(t) </math> are the inputs to the model.  The variable <math> \theta </math> lies on the unit circle and ranges between 0 and <math>2\pi\ .</math>  When <math> \theta=\pi </math> the neuron "spikes", that is, it produces an [[action potential]].   
   −
图1:极限环上的鞍节点。模型的输入在哪里。变量在单位圆上,取值范围在0到神经元“刺突”即产生'''动作电位'''之间。  
+
其中<math> I(t) </math>即模型的输入。变量<math> \theta </math>在单位圆上,取值范围在0到<math>2\pi\ .</math>之间,当<math> \theta=\pi </math>'''神经元'''“刺突”即产生'''动作电位'''。 
 +
 
 +
图1:极限环上的鞍节点。  
    
==Derivation==
 
==Derivation==
104

个编辑