第204行: |
第204行: |
| We consider the rate-based dynamics in Eq. (3)for depression-dominated synapses (<math>u^+ \approx U</math>) and for synaptic responses that are much faster than the depression dynamics (<math>\tau_s \ll \tau_d</math>): | | We consider the rate-based dynamics in Eq. (3)for depression-dominated synapses (<math>u^+ \approx U</math>) and for synaptic responses that are much faster than the depression dynamics (<math>\tau_s \ll \tau_d</math>): |
| | | |
− | 我们考虑方程式中基于速率的动态。方程式(3)用于抑郁症主导的突触 <math>u^+ \approx U</math>和比抑郁症动力学快得多的突触反应 (<math>\tau_s \ll \tau_d</math>):
| + | 我们考虑方程式中基于速率的动态。等式(3)用于抑郁症主导的突触 <math>u^+ \approx U</math>和比抑郁症动力学快得多的突触反应 (<math>\tau_s \ll \tau_d</math>): |
| | | |
| <math> | | <math> |
第215行: |
第215行: |
| The aim is to derive a filter<math>\chi</math>that relates the output synaptic current <math>I</math>to the input rate<math>R</math>. | | The aim is to derive a filter<math>\chi</math>that relates the output synaptic current <math>I</math>to the input rate<math>R</math>. |
| Note that because the input rate<math>R</math>enters the equations in a multiplicative fashion the input-output transfer function is non linear. Yet a linear filter can be derived by considering small perturbations <math>R_1 \rho(t)</math>of the firing rate <math>R(t)</math>around a constant rate <math>R_0</math>, that is, | | Note that because the input rate<math>R</math>enters the equations in a multiplicative fashion the input-output transfer function is non linear. Yet a linear filter can be derived by considering small perturbations <math>R_1 \rho(t)</math>of the firing rate <math>R(t)</math>around a constant rate <math>R_0</math>, that is, |
| + | |
| + | 目的是导出一个过滤器 <math>\chi</math>,它将输出突触电流 <math>I</math>与输入速率 <math>R</math> 联系起来。请注意,由于输入速率 <math>R</math>以乘法方式进入方程,因此输入-输出传递函数是非线性的。然而,线性滤波器可以通过考虑在恒定速率 <math>R_0</math>附近的发射率<math>R(t)</math>的小扰动 <math>R_1 \rho(t)</math>,即 |
| | | |
| <math> | | <math> |
第221行: |
第223行: |
| </math> | | </math> |
| | | |
− | 目的是导出一个过滤器 <math>\chi</math>,它将输出突触电流 <math>I</math>与输入速率 <math>R</math> 联系起来。请注意,由于输入速率 <math>R</math>以乘法方式进入方程,因此输入-输出传递函数是非线性的。然而,线性滤波器可以通过考虑在恒定速率 <math>R_0</math>附近的发射率<math>R(t)</math>的小扰动 <math>R_1 \rho(t)</math>,即
| + | We assume that such small perturbations in <math>R</math>produce small perturbations in the variable<math>x</math>around its steady state value<math>x_0>0</math> |
− | | |
− | <math>
| |
− | R(t):=R_0 + R_1 \rho (t)\, \quad\text{with}\quad R_0,R_1>0 \quad\text{and}\quad R_1\ll R_0 \, .
| |
− | \label{eq:appA_pert}
| |
− | </math> | |
| | | |
− | We assume that such small perturbations in <math>R</math>produce small perturbations in the variable<math>x</math>around its steady state value<math>x_0>0</math>:
| + | 我们假设 <math>R</math>中的这种小扰动会在变量<math>x</math>中围绕其稳态值<math>x_0>0</math>产生小的扰动: |
| <math> | | <math> |
| x(t) = x_0 + x_1(t)\quad\text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, . | | x(t) = x_0 + x_1(t)\quad\text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, . |
第234行: |
第231行: |
| </math> | | </math> |
| | | |
− | <nowiki>我们假设 $R$ 中的这种小扰动会在变量 $x$ 中围绕其稳态值 $x_0>0$ 产生小的扰动: [math]\displaystyle{ x(t) = x_0 + x_1(t)\quad\ text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, . \label{eq:appA_x01} }[/math]</nowiki> | + | We can now linearize the dynamics of <math>x(t)</math> around the steady-state value <math>x_0</math>by approximating the product |
| | | |
− | We can now linearize the dynamics of $x(t)$ around the steady-state value $x_0$ by approximating the product
| + | 我们现在可以通过近似乘积将 <math>x(t)</math>的动态线性化为围绕稳态值<math>x_0</math> |
− | | |
− | 我们现在可以通过近似乘积将 $x(t)$ 的动态线性化为围绕稳态值 $x_0$ | |
| | | |
| <math> | | <math> |
第361行: |
第356行: |
| | | |
| Finally, the inverse Fourier transform of Eq.(19)reads | | Finally, the inverse Fourier transform of Eq.(19)reads |
| + | |
| + | 最后,等式(19)的傅里叶逆变换读取 |
| <math> | | <math> |
| \begin{eqnarray} | | \begin{eqnarray} |
第367行: |
第364行: |
| \end{eqnarray} | | \end{eqnarray} |
| </math> | | </math> |
| + | |
| with | | with |
| + | |
| + | 以及 |
| + | |
| <math> | | <math> |
− | \begin{eqnarray}
| |
− | \chi(t)=\delta(t) - \frac{1/x_0-1}{\tau_{d}} \begin{cases} \displaystyle {\exp\left(-\frac{t}{x_0\tau_{d}}\right)} & \text{for}\quad t\ge0 \\ 0 & \text{for}\quad t<0 \end{cases}\,.
| |
− | \label{eq:appA_chi_final}
| |
− | \end{eqnarray}
| |
− | </math>
| |
− |
| |
− | 最后,等式(19)的傅里叶逆变换读取 <math>
| |
− | \begin{eqnarray}
| |
− | I(t) = I_0 + \frac{I_0 R_1}{R_0} \int {\rm d}\tau \, \chi(\tau) \rho(t-\tau)
| |
− | \label{eq:appA_I_final}
| |
− | \end{eqnarray}
| |
− | </math>以及<math>
| |
| \begin{eqnarray} | | \begin{eqnarray} |
| \chi(t)=\delta(t) - \frac{1/x_0-1}{\tau_{d}} \begin{cases} \displaystyle {\exp\left(-\frac{t}{x_0\tau_{d}}\right)} & \text{for}\quad t\ge0 \\ 0 & \text{for}\quad t<0 \end{cases}\,. | | \chi(t)=\delta(t) - \frac{1/x_0-1}{\tau_{d}} \begin{cases} \displaystyle {\exp\left(-\frac{t}{x_0\tau_{d}}\right)} & \text{for}\quad t\ge0 \\ 0 & \text{for}\quad t<0 \end{cases}\,. |