更改

添加4字节 、 2022年8月10日 (三) 21:57
第132行: 第132行:     
=== 处理未观察到或未定义的结果 ===
 
=== 处理未观察到或未定义的结果 ===
另一种情况下,当一个感兴趣的结果只对经历了另一个相关结果的个体子集可见时,主体分层是有用的
+
另一种情况下,当一个感兴趣的结果只对经历了另一个相关结果的个体子集可见时,主体分层是有用的。例如,考虑以劳动力发展为重点的干预措施,如就业团队(例如:Frumento等人,2012;Zhang, Rubin, & Mealli, 2008)。在评估这类项目的影响时,我们可能会特别关注项目分配对工资的影响。
   −
例如,考虑以劳动力发展为重点的干预措施,如就业团队(例如:Frumento等人,2012;Zhang, Rubin, & Mealli, 2008)。在评估这类项目的影响时,我们可能会特别关注项目分配对工资的影响。
+
复杂的是,工资只对被雇佣的个人可见和明确。一种朴素的方法是简单地比较所有观察到的在干预后被雇用的个人的工资。然而,这种方法的一个明显问题是,干预可能会诱导那些在就业时挣得特别低的人进入劳动力市场。如果是这样的话,我们可能会错误地得出这样的结论:干预对工资有负面影响。
 
  −
复杂的是,工资只对被雇佣的个人可见和明确。一种幼稚的方法是简单地比较所有观察到的在治疗后被雇用的个人的工资。然而,这种方法的一个明显问题是,干预可能会诱导那些在就业时挣得特别低的人进入劳动力市场。如果是这样的话,我们可能会错误地得出这样的结论:干预对工资有负面影响。
      
另一种选择是为那些不工作的人的工资赋值为零。然而,这一决定将导致对该计划对就业和以就业为条件的工资的综合影响的估计。
 
另一种选择是为那些不工作的人的工资赋值为零。然而,这一决定将导致对该计划对就业和以就业为条件的工资的综合影响的估计。
      −
主分层为这一常见的分析问题提供了一个有用的解决方案。Zhang, Rubin和Mealli(2008)使用了一个主要分层框架,并根据分配给处理和控制的就业状态来定义地层,如图3所示。在这里,个体可以属于四种可能的群体之一
  −
  −
一组无论治疗与否都会被录用,一组无论治疗与否都不会被录用,一组只有在接受治疗时才会被录用,还有一组只有在接受控制条件时才会被录用。这个框架允许作者估计对理解项目影响特别有意义的影响
     −
首先,通过估计各阶层参与者的比例,作者估计了干预对就业的影响。他们通过比较两个阶层的人的比例来得出结论:那些只有在得到治疗后才会被雇用的人
+
主分层为这一常见的分析问题提供了一个有用的解决方案。Zhang, Rubin和Mealli(2008)使用了一个主要分层框架,并根据分配给处理和控制的就业状态来定义地层,如图3所示。在这里,个体可以属于四种可能的群体之一。一组无论干预与否都会被录用,一组无论干预与否都不会被录用,一组只有在接受干预时才会被录用,还有一组只有在接受控制条件时才会被录用。这个框架允许作者估计对理解项目影响特别有意义的影响。
   −
(即,该计划对就业有积极影响的个人)和那些只有在不被对待的情况下才会被雇用的人(即,该计划对就业有负面影响的个人)第二种和第一种的份额之间的差异是对就业的影响。
+
首先,通过估计各阶层参与者的比例,作者估计了干预对就业的影响。他们通过比较两个阶层的人的比例来得出结论:那些只有在得到治疗后才会被雇用的人(即,该计划对就业有积极影响的个人)和那些只有在不被对待的情况下才会被雇用的人(即,该计划对就业有负面影响的个人)第二种和第一种的份额之间的差异是对就业的影响。
    
其次,对于那些在任何一种实验条件下被聘用的人,他们可以研究分配待遇对工资的影响。例如,在相关工作中,Lee(2009)发现,对于那些在两种实验条件下会被雇佣的人来说,工作团队确实会导致工资的增加,并基于这些结果得出结论,该项目通过增加人力资本(通过在这部分研究参与者中增加工资来衡量)和通过增加那些没有机会而不会被雇佣的人的就业率来影响劳动力市场结果。
 
其次,对于那些在任何一种实验条件下被聘用的人,他们可以研究分配待遇对工资的影响。例如,在相关工作中,Lee(2009)发现,对于那些在两种实验条件下会被雇佣的人来说,工作团队确实会导致工资的增加,并基于这些结果得出结论,该项目通过增加人力资本(通过在这部分研究参与者中增加工资来衡量)和通过增加那些没有机会而不会被雇佣的人的就业率来影响劳动力市场结果。
316

个编辑