更改

第108行: 第108行:  
在传统因果发现中,Linear Non-Gaussian模型通常是我们期望的模型假设。在这种假设下,我们通常可以实现可识别,有保障的因果发现。我们首先将这种Inductive Bias加在Latent空间 [Yao et al., 2021],假设实际的隐变量与其落后期之间满足线性假设(LNM)。观测到的数据Xt则是隐变量Zt的非线性(但可逆)的映射。另外,只要我们假设因果过程中的噪声(Process Noise)之间互相独立,且满足Genenralized Laplacian分布(一种Non-Gaussian模型假设)。通过理论推导,我们发现只要将这些假设转换为Variational Autoencoder (VAE)的参数化的方式,我们就可以有保证地恢复因果隐变量和它们之间的因果关系。
 
在传统因果发现中,Linear Non-Gaussian模型通常是我们期望的模型假设。在这种假设下,我们通常可以实现可识别,有保障的因果发现。我们首先将这种Inductive Bias加在Latent空间 [Yao et al., 2021],假设实际的隐变量与其落后期之间满足线性假设(LNM)。观测到的数据Xt则是隐变量Zt的非线性(但可逆)的映射。另外,只要我们假设因果过程中的噪声(Process Noise)之间互相独立,且满足Genenralized Laplacian分布(一种Non-Gaussian模型假设)。通过理论推导,我们发现只要将这些假设转换为Variational Autoencoder (VAE)的参数化的方式,我们就可以有保证地恢复因果隐变量和它们之间的因果关系。
   −
Figure: Linear Latent Causal Processes with Generalized Laplacian Noise模型假设
+
[[File:Linear Latent Causal Processes with Generalized Laplacian Noise.png|400px|center|thumb|Linear Latent Causal Processes with Generalized Laplacian Noise模型假设]]
    
我们首先在KiTTiMask数据上验证我们的理论的模型。KiTTiMask是一个记录行人步行的视频数据集,其包含的三个因果隐变量,即行人在视频中的横向位置,纵向位置和行人在视频中的大小,它们之间满足独立线性时序关系并且噪声可近似成Laplacian Noise。下图中,实验结果验证了我们的模型能在独立线性时序关系的时序数据中恢复出因果隐变量。
 
我们首先在KiTTiMask数据上验证我们的理论的模型。KiTTiMask是一个记录行人步行的视频数据集,其包含的三个因果隐变量,即行人在视频中的横向位置,纵向位置和行人在视频中的大小,它们之间满足独立线性时序关系并且噪声可近似成Laplacian Noise。下图中,实验结果验证了我们的模型能在独立线性时序关系的时序数据中恢复出因果隐变量。
   −
Figure: KiTTiMask实验结果:(a)恢复的隐变量和真实因果隐变量之间的相关系数;(b)恢复的因变量和真实因果隐变量之间的散点图;(c)恢复出来的因果关系矩阵;(d)Latent traveral展示因果隐变量如何影响图像内容。
+
[[File:KiTTiMask实验结果.png|400px|center|thumb|KiTTiMask实验结果:(a)恢复的隐变量和真实因果隐变量之间的相关系数;(b)恢复的因变量和真实因果隐变量之间的散点图;(c)恢复出来的因果关系矩阵;(d)Latent traveral展示因果隐变量如何影响图像内容。]]
    
下一步,我们在二维质量弹簧系统视频数据上验证我们的理论和模型。质量弹簧系统满足线性假设。我们人为的在数据生成过程中在横向和纵向上加上独立的Laplacian Noise,使生成的数据满足我们的条件。下图中,实验结果验证了我们的模型能在线性时序关系的时序数据中恢复出因果隐变量和它们之间的因果关系。
 
下一步,我们在二维质量弹簧系统视频数据上验证我们的理论和模型。质量弹簧系统满足线性假设。我们人为的在数据生成过程中在横向和纵向上加上独立的Laplacian Noise,使生成的数据满足我们的条件。下图中,实验结果验证了我们的模型能在线性时序关系的时序数据中恢复出因果隐变量和它们之间的因果关系。
    +
[[File:质量弹簧系统视频数据实验结果.png|400px|center|thumb|质量弹簧系统视频数据实验结果:(a)恢复的隐变量和真实因果隐变量之间的相关系数;(b)恢复出来的因果关系矩阵。]]
   −
Figure: 质量弹簧系统视频数据实验结果:(a)恢复的隐变量和真实因果隐变量之间的相关系数;(b)恢复出来的因果关系矩阵。
+
<br>
   −
<br>
   
=====Nonparametric Latent Causal Processes=====
 
=====Nonparametric Latent Causal Processes=====
 
在上小节中,我们探讨了在时序因果隐变量和其落后期之间满足线性关系时,如何通过模型假设和添加归纳偏置的方式恢复因果隐变量和它们之间的关系。然而,线性假设是一种很强的函数形式假设,许多时序数据并不满足隐变量之间的线性假设。在这个小节,我们继续讨论在因果隐变量之间满足非线性,甚至非参数化(Nonparametric)的形式下,如何实现因果表征学习 。
 
在上小节中,我们探讨了在时序因果隐变量和其落后期之间满足线性关系时,如何通过模型假设和添加归纳偏置的方式恢复因果隐变量和它们之间的关系。然而,线性假设是一种很强的函数形式假设,许多时序数据并不满足隐变量之间的线性假设。在这个小节,我们继续讨论在因果隐变量之间满足非线性,甚至非参数化(Nonparametric)的形式下,如何实现因果表征学习 。
7,129

个编辑